Nonroad Mobile Source Compliance Management Program in the U.S.

The 4th SINO-US Workshop on Motor Vehicle Pollution Prevention and Control

U.S. Environmental Protection Agency
Office of Transportation and Air Quality

Nonroad Diesel Engines

- Sector encompasses engines used in non-road equipment, including stationary applications
 - Engines are certified independent of equipment
 - Sizes range from less than 8 kW up to 4 MW
 - Broad mix of technologies – mechanical and electronic fuel control, aftertreatment
- Sector represents 10% of the total mobile-source emissions (combined pollutants – 2009 data)
- Comparatively large number of manufacturers
 - 60+ engine manufacturers and production volumes exceeding 1M units each year
 - More than 65% of volume is produced outside the U.S.
 - 550+ certificates issued each year
 - 1000+ equipment manufacturers participating in Transition Program for Equipment Manufacturers (TPEM)
Wide Range of Diesel Equipment

- genset 15 kW
- skid steer loader 60 kW
- 2WD tractor 97 kW
- light tower 7 kW
- backhoe loader 60 kW
- combine 212 kW
- utility vehicle 13 kW
- mining truck 746 kW

Phase-In of Nonroad Diesel Engine Programs

- Tier 1: Similar to highway 1998
- Tier 2: Similar to highway 2004
- Tier 3: Early Tier 4 focused on smaller engines
- Tier 4
 - "interim" focused on NOx
 - "final" focused on NOx
 - Similar to highway 2007-2010 (advanced aftertreatment)
Land-Based Nonroad Standards

Standards shown here represent 130-560 kW engines. Standards and implementation dates vary by engine power.

Phase-In to Nonroad Diesel Tier 4

- **<19 kW**: 2008 (no AT) △ DPFs expected △ NOx aftertreatment (AT) expected
- **19-56 kW**:
 - 2008 (no AT) △ Tier 4f (no NOx AT)
 - today
- **56-130 kW**: △ Tier 4i △ Tier 4f
- **130-560 kW**: △ Tier 4i △ Tier 4f
- **>560 kW**: △ Tier 4i △ Tier 4f

- >900 kW gensets only
- <900 kW gensets too

June 10, 2014 U.S. Environmental Protection Agency 5
Transition Program for Equipment Manufacturers (TPEM)

• Typically, if new engine-based emission standards apply in a given model year, equipment manufactured in that calendar year must have engines certified to the new standards
 – Given significant engine design changes with transition to Tier 4 (i.e., addition of aftertreatment controls), was important to provide time/flexibility to downstream equipment manufacturers to adapt their equipment designs
• TPEM allows nonroad equipment manufacturers to produce equipment with engines subject to less stringent emission standards after the Tier 4 emission standards begin to apply
 – Flexibility provided over a 7 year transition period
 – Manufacturers given a certain number of previous Tier engine allowances to manage over transition period (e.g., 700 units or 80 percent of production)
 – Enables manufacturers to focus redesign efforts on most critical equipment models first
• Absent such a flexibility program, would likely have needed to adopt delayed regulatory schedule for implementing Tier 4 emission standards

How OTAQ Ensures Compliance

OTAQ makes use of multiple compliance tools within our regulatory framework

• Prior to engine production
 – Detailed review of manufacturers’ application for certification
 – Ensure pollution prevention through proper emission control design
 – Confirmatory testing
 • Ensure test results for certification engines are accurate
 – Review of reporting results and compliance testing performance from previous model years
• At time of engine production
 – Selective enforcement audits (SEAs) of manufacturers’ engine production lines
 – Ensure conformity of production engines to certification engine/application
 – Includes audit of manufacturers’ labs to ensure compliance with testing requirements
• After engine introduced into commerce
 – EPA-run in-use testing (engine dynamometer and in-situ PEMS)
 – Ensure engines comply with standards in real-world operating conditions (field testing)
 – Emission-related defect and recall reporting
 • Ensures emission defects identified and corrected as needed
 • Provides poor quality deterrent and encourages future improvements
Diesel Engine Compliance Program

- EPA Issues Certificate of Conformity
- EPA Follow-up (Defect and Recall Reports, Mfr. In-Use Testing, EPA Testing)
- EPA Test Data Review/Analysis
- CARB Coordination (Warranty Reporting)
- OECA Coordination (Enforcement)
- PLT, TPEM, ABT, and Production Report Review

EPA Confirmatory Testing
EPA Review of Manufacturer Application
EPA Selective Enforcement Audit
EPA In-Use Surveillance Testing

End of Useful Life (Varies by subsector)

- Pre-Production Certification Process
 - Review information requirements
 - Emissions data collected over appropriate test cycles
 - Nonroad Transient Cycle (NRTC) – transient test (cold/hot starts)
 - Discrete-Mode or Ramped Modal Cycle (NRSC) – steady-state test (hot starts)
 - Not-to-Exceed (NTE) testing
 - Engine speed/load conditions not represented above
 - Expanded ambient conditions
 - Infrequent regeneration adjustment factors
 - Deterioration factors
 - Service accumulation over portion of regulatory useful life
 - In-use representative durability cycle
 - Emission control strategies (Auxiliary Emission Control Devices or AECDs)
 - For strategies that reduce effectiveness of emission controls, manufacturers must justify why they are approvable (i.e., not a defeat device)
 - Substantially included in a test cycle
 - Limited to engine starting only
 - Necessary for engine/equipment protection (for operation outside the NTE zone)

Full Useful Life:
- On-highway: up to 10 years / 435,000 miles
- Nonroad: up to 10 years / 8,000 hours
- Marine: up to 10 years / 20,000 hours
- Locomotive: up to 10 years / 32,000 MW-hours

Pre-Production Certification Process

- Review information requirements
 - Emissions data collected over appropriate test cycles
 - Nonroad Transient Cycle (NRTC) – transient test (cold/hot starts)
 - Discrete-Mode or Ramped Modal Cycle (NRSC) – steady-state test (hot starts)
 - Not-to-Exceed (NTE) testing
 - Engine speed/load conditions not represented above
 - Infrequent regeneration adjustment factors
 - Deterioration factors
 - Service accumulation over portion of regulatory useful life
 - In-use representative durability cycle
 - Emission control strategies (Auxiliary Emission Control Devices or AECDs)
 - For strategies that reduce effectiveness of emission controls, manufacturers must justify why they are approvable (i.e., not a defeat device)
 - Substantially included in a test cycle
 - Limited to engine starting only
 - Necessary for engine/equipment protection (for operation outside the NTE zone)

June 10, 2014
U.S. Environmental Protection Agency

5
Certification Test Cycles

NRTC

June 10, 2014
U.S. Environmental Protection Agency

NTE Control Area

June 10, 2014
U.S. Environmental Protection Agency
Pre-Production Certification Process (cont.)

- Adjustable parameters
 - Ensure against tampering outside of compliant settings
- Maintenance intervals
- On-board diagnostics (OBD)
 - Not applicable for nonroad engines
- Collect application fees
 - EPA collects fees for each certificate issued
 - Allows EPA to recover reasonable costs associated with certification and compliance
- Issue certificate of conformity

Confirmatory Testing

- Manufacturers do bulk of emission certification testing at their labs
- EPA audits (or confirmatory tests) a subset of those engines at NVFEL, contract labs, or manufacturers labs
 - Provides manufacturers incentive to perform accurate tests
- Tests conducted
 - Nonroad Transient Cycle (NRTC) – transient test (cold/hot starts)
 - Discrete-Mode or Ramped Modal Cycle (NRSC) – steady-state test (hot starts)
 - Not-to-Exceed (NTE) testing
- If manufacturer fails confirmatory test, certificate of conformity is withheld until manufacturer addresses root cause of noncompliance
Selective Enforcement Audits (SEAs)

- EPA selects engines off the manufacturers production line for emission testing
 - Typically requires testing of 5-6 engines minimum to come to pass/fail decision
 - Ensures that production engines comply with emission standards and conform to the engine design indicated in the certification process
 - Provides a measure of production variability
 - Allows for audits of manufacturers test labs
 - If manufacturer fails SEA, certificate of conformity can be suspended until manufacturer addresses root cause of noncompliance
- Note: Certificates are conditioned upon manufacturers granting EPA access to production facilities to conduct audits

Production Line Testing (PLT)

- Manufacturer-run version of SEAs
 - Not applicable for land-based nonroad industry
- Manufacturer selects engines off their production line for emission testing throughout the year
 - Sample size is typically small percentage (e.g., 1%) of U.S.-directed production
 - Ensures that production engines comply with emission standards and conform to the engine design indicated in the certification process
 - Provides a measure of production variability
 - If manufacturer fails PLT, certificate of conformity can be suspended until manufacturer addresses root cause of noncompliance

June 10, 2014 U.S. Environmental Protection Agency
In-Use Testing

• EPA’s evaluation of engine compliance extends beyond the pre-production certification process to ensure engines comply with emission standards during their full useful life

• Manufacturer-run in-use
 – Under the program, manufacturers test fleet or customer-owned in-use equipment
 – No program currently in place nonroad industry – currently discussing schedule for development with industry

• EPA-run in-use
 – EPA procures and tests nonroad equipment already introduced into commerce
 – Includes in-situ testing (PEMS) as well as pulling engines for lab testing
 – EPA will be starting in-situ testing of nonroad equipment this year

• If manufacturer fails any testing, EPA can order recall of engines introduced into commerce

Emissions Warranty and Defects

• Emissions Warranty
 – Manufacturers must warrant the following to purchasers regarding engine and all parts of its emission-control system:
 • It is designed, built, and equipped so it conforms at the time of sale to applicable regulations
 • It is free from defects in materials and workmanship that may keep it from meeting applicable regulations
 – Warranty period: up to 3,000 hours / 5 years

• Emission-related defects
 – Manufacturers must investigate any indication that engines introduced into commerce have incorrect, improperly installed, or otherwise defective emission-related component
 • Includes defects in design, materials or workmanship
 • Must file reports for defects affecting typically 20 or more engines
 – Can lead to EPA ordering recalls by manufacturer if determined that a substantial number of properly maintained and used engines do not conform to regulations during their useful life
 • Manufacturer required to submit plan to remedy nonconformity
 • Manufacturer encouraged to conduct voluntary recalls
Compliance Reporting

- Manufacturers are required to report certain information to EPA on a periodic basis
- Examples:
 - Engine Production Volume Reports (Annual)
 - Emissions Averaging, Banking, and Trading Reports (Annual)
 - Defect / Voluntary Recall Reports
- EPA audits information to ensure conformance to regulatory requirements
 - Delinquent reporting can result in denial of certification in future model years

Interacting with Regulated Manufacturers

- Providing compliance assistance to industry is critical to ensuring that products comply throughout their useful life
- Recommendations:
 - Annual certification preview meetings with manufacturers
 - Regular interactions throughout the year
 - Conference calls
 - Exchanges of information by e-mail
 - Issuance of guidance documents
 - See http://www.epa.gov/otaq/cert/dearmfr/dearmfr.htm for examples
 - Intermittent workshops or web-conferences
Strategy to Address Growth in Size and Complexity of Program

- Prioritize work using risk-based approach
- Establish agile strategy that periodically shifts focus among sectors and compliance activities
- Target compliance activity on emerging as well as traditional priorities
- Use technology to automate and streamline certification and record-keeping processes
- Work early and collaboratively with stakeholders to establish guidance and policy, and to provide technical assistance
- Use tracking and reporting to inform public about compliance results

Appendix
Recent Compliance Issues

• Nonroad engine confirmatory testing
 – Validates (or refutes) results submitted by engine manufacturer at time of certification
 – Prevents non-compliant engines from making their way into the marketplace – certificates are not issued
 – Important for engines that may be difficult to track down in the field for recall purposes
 – Especially important for new entrants that have not been subject to EPA regulation or testing

• Results from recent testing:
 – Indicate that particular manufacturers are submitting false results in their certification applications
 – Some manufacturers choose not to certify engine families after test orders are issued
 – Other manufacturers exit the market under one company name and attempt to certify the same engine under a different company name – necessitates vigilance in testing

June 10, 2014
U.S. Environmental Protection Agency

SCR-Related Issues

• EPA has developed guidance regarding proper maintenance and adjustment of SCR systems
 – Diesel Exhaust Fluid (DEF) level monitoring and low level inducements
 • Warn operators of low DEF level and provide inducements (e.g., vehicle speed limitation, engine shutdown) to ensure DEF tanks are refilled
 – DEF quality monitoring and poor quality inducements
 • Warn operators of poor quality DEF and provide inducements (e.g., vehicle speed limitation, engine shutdown) to ensure appropriate specification DEF is utilized
 – SCR component tampering and inducements
 • Alert operators of SCR component tampering (e.g., disconnected dosing module) and provide inducements (e.g., vehicle speed limitation, engine shutdown) to problems are fixed

June 10, 2014
U.S. Environmental Protection Agency
SCR-Related Issues

- **DEF Infrastructure**
 - Addressed with manufacturer at time of certification
 - Ensure reducing agent available at dealerships and truck-stops or non-road distributors
 - Have a back-up plan, such as a toll-free phone number, if customers are unable to obtain DEF
 - Education and outreach for potential owners and service industry

- **DEF Quality**
 - Manufacturers adopted ISO 22241-1 quality standard for DEF
 - API DEF Quality Licensing Program widely utilized
 - Includes audit and enforcement functions
 - www.apidef.org