Optical, physical, and chemical characterization of marine Black Carbon

Kevin Thomson
Measurement Science for Emerging Technology

September 16, 2015
2nd ICCT BC Workshop, TNO, Utrecht, Netherlands
Outline

• BC mass concentration measurement challenges
• instrument calibration verification
• BC/aerosol properties of interest and measurement methods
• sample conditioning
ICCT UCR linkage

• NRC Canada is contributing to phase one of the ICCT UCR marine BC project.
• Transport Canada hopes to support the efforts of NRC Canada for this project in the future.
• The objective is to provide complementary data or support to the principle objectives of the ICCT UCR project.
BC mass concentration measurement challenges

- All instruments measuring BC mass concentration do so indirectly, relying on knowledge of optical, physical, or chemical properties.
- Instruments are generally sensitive to interferences which depend on how they operate (underlying method and specific operating parameters).
- Manufacturers implement different calibration principles.
- A ‘bottled’ BC aerosol reference material does not exist.
- Impact of fuel type and engine load on BC characteristics and interferences not well known.
- Instrument contamination under harsh operating conditions possible (likely?).
Mitigating the measurement challenges

- instrument calibration verification before and after campaign using flame generated BC with known characteristics
- verification of BC optical, physical, and chemical properties as a function of fuel type and engine load
- quantification of co-emitted species
- explore exhaust condition strategies
Instrument calibration verification
Calibration verification against Thermal Optical Method

• Correlation to elemental carbon (EC) via thermo-optical method (NIOSH 5040)*

Production of BC

- miniCast burner
- Multi-stage dilution

Size Cut and Splitting

- cyclone

Real-time mass measurement

- Real Time Instrument 1
- Real Time Instrument 2
- ...\n
NIOSH 5040 filter collection

- Quartz Filter
- MFC
- Pump

• *SAE AIR6241, “Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines,” (2013)
Example of instrument comparison

Graph:
- **NRC LII:** $y = 1.0916x$
- **AVL MSS:** $y = 1.1987x$
- **CU LII:** $y = 1.1026x$
- **CU MSS:** $y = 0.9314x$
- **CAPS (530nm):** $y = 0.5277x$
- **CAPS (780nm):** $y = 0.9164x$
Optical, physical, and chemical characterization
Characteristics of interest

- spectral variability of light absorbing properties
 - often expressed as Angstrom absorption exponent (AAE)
 - MEPC 67/INF.31 suggests AAE ~ 1 as a criteria for BC
- TEM ‘visual’ of particles
 - size, shape, compactness, maturity, coatings
- RAMAN spectroscopy
 - internal bond structures, graphitization, bound organics
- volatile coating mass
- composition of organic particles
- composition of all particles and gas phase
Spectral optical properties

• cavity attenuation phase-shift PM single-scattering albedo (CAPS PM$_{SSA}$)
 o extinction coefficient
 o total scattering coefficient
 o single-scattering albedo
 o 530, 660, 780 nm

• photoacoustic extinction meter (PAX)
 o absorption coefficient
 o total scattering coefficient
 o 375, 534, 870 nm

• angstrom absorption exponent
 o can be determined from multi-wavelength data
Quantitative TEM analysis

- primary particle size
- aggregate
 - size distribution
 - fractal structure
 - compactness
- internal structure
 - graphitic layer length and spacing
Qualitative TEM analysis

- particle maturity
- coatings
- other particles
 - solids
 - liquids
- particle collapse
microRaman surface analysis of BC particles

- Spectroscopic technique used to observe vibrational, rotational, and other low-frequency modes in a material.
- Identifies internal structural features in carbon particles:
 - Bonding (\(sp^2\) vs. \(sp^3\))
 - Degree of graphitization:
 - G – Graphitic
 - D1-D4 – Defects/disorders
- Possible fingerprint for different sources.
Quantification of BC coating mass using DMA, CPMA, denuder, and CPC

- start with an aerosol of coated particles
Quantification of BC coating mass using DMA, CPMA, denuder, and CPC

• start with an aerosol of coated particles
• size select particles using DMA
Quantification of BC coating mass using DMA, CPMA, denuder, and CPC

• start with an aerosol of coated particles
• size select particles using DMA
• measure peak particle mass for size selected mass with CPMA and CPC
 o represents mass of particles with coating
Quantification of BC coating mass using DMA, CPMA, denuder, and CPC

- start with an aerosol of coated particles
- size select particles using DMA
- measure peak particle mass for size selected mass with CPMA and CPC
 - represents mass of particles with coating
- strip particles of coating
Quantification of BC coating mass using DMA, CPMA, denuder, and CPC

- start with an aerosol of coated particles
- size select particles using DMA
- measure peak particle mass for size selected mass with CPMA and CPC
 - o represents mass of particle with coating
- strip particles of coating
- measure peak particle mass for same size
- difference in mass is the coating mass
- can be done for a range of particle sizes
Sample conditioning
Sample conditioning

• brainstorming ideas and looking for input from those with marine emission experience
 o dilution
 o heated dilution with evaporator tube
 o thermal denuder
 o thermal denuder with heated activated carbon
 o catalytic stripper
 o diffusion dryers/stripper which target particular gases that are problematic to instruments
Wrap up

• objective of this part of the campaign is to:
 o improve comparability of instruments
 o improve our understanding of marine engine generated BC particles and how they do or don’t change with fuel and load
 o help to understand any differences observed amongst BC mass concentration instrument
 o explore mechanisms to condition exhaust before measurement to improve measurement accuracy

• we welcome ideas, criticisms, reality checks!
Thank you

Kevin Thomson
kevin.thomson@nrc-cnrc.gc.ca
www.nrc-cnrc.gc.ca