

# INTERNATIONAL CENTRE FOR AUTOMOTIVE TECHNOLOGY

[A Division of NATRIP Implementation Society (NATIS), Govt. of India]

C D 0 R M 0004

Date: 29.03.2017

## **DEVELOPMENT TEST REPORT**

On

# Laboratory and On Road Emissions Testing of In-Use Passenger Vehicles in India

For

M/S INTERNATIONAL COUNCIL FOR CLEAN TRANSPORTATION (1225 Eye Street, NW, Suite 900 Washington, DC 20005 (202) 534-1605)

Mr. Anup Bandivadekar & Mr. Francisco Posada

Test Site: ICAT, IMT Manesar & Docket No:-47334 Test Date: Oct'2016 to Jan'2017 Innovation Service Excellence

International Centre of Automotive Technology Plot No-26, Sec-3, IMT Manesar, Gurgaon 122050

| Prepared by         | Checked by                       |                          | Approved by                       | (Star)        |
|---------------------|----------------------------------|--------------------------|-----------------------------------|---------------|
| Brij Mohan          | Jaman Jupto                      | THE FOR AUTOMOTIVE ECONO | Jawel 1.22                        | RMDOD4        |
| BRIJ MOHAN<br>(GET) | GAURAV GUPTA<br>(MANAGER PT-CoE) |                          | PAMELA TIKKU<br>(DEPARTMENT HEAD) | Pg 1 of<br>48 |

Office Address : Plot No.-26, Sector-3, HSIIDC, IMT-Manesar, Gurgaon-122050. Haryana (India) Phone : 0124-4586111, Fax : +91-124-2290005. E-mail: team@icat.in, Website : <u>www.icat.in</u> (An ISO 9001, ISO 14001 and OHSAS 18001 certified, scope wise NABL accredited and BIS recognised Test House)



## **Table of Contents**

| 1.  | Executive Summary                                                      | 6   |
|-----|------------------------------------------------------------------------|-----|
| 2.  | Background                                                             | 6   |
| 3.  | Scope of Work                                                          | 6   |
| 4.  | Test Vehicles                                                          | 7   |
| 5.  | Project Activities                                                     | 8   |
| 5.1 | Task 1 -Chassis Dynamometer Testing,                                   |     |
|     | 5.1.1 Task 1- Deliverables                                             | 9   |
|     | 5.1.2 Task 1 – Test Setup and Methodology                              | 9   |
|     | 5.1.3 Task 1 – Results                                                 | .15 |
|     | 5.1.4 Task 1 - Conclusion                                              | .23 |
| 5.2 | 2 Task 2 – PEMS Testing                                                | .25 |
|     | 5.2.1 Task 2 –Deliverables                                             | .25 |
|     | 5.2.2 Task 2 – Test Setup and Methodology                              | .26 |
|     | 5.2.3 Task 2 – Results                                                 | .32 |
|     | 5.2.4 Task 2 - Conclusion                                              | .39 |
| 5.3 | 3 Task 3 – Comparison of laboratory and on-road emissions measurements |     |
| 6.  | References.                                                            | .47 |
|     | Disclaimer                                                             | .48 |
|     | Innovation • Service • Excellence                                      |     |

| С | D | 0 | R | M | 0004 |
|---|---|---|---|---|------|
| - | - | - |   |   | 0001 |



# List of Figures

| Figure 1: Vehicles procured                                                | · · · · | 7 |
|----------------------------------------------------------------------------|---------|---|
| Figure 2: Chassis dynamometer and Analyzer layout                          | 1       | 0 |
| Figure 3: MIDC Test Cycle                                                  |         |   |
| Figure 4: WLTC test cycle classes                                          |         |   |
| Figure 5: WLTC Test cycle                                                  |         |   |
| Figure 6: Gear shift points in WLTC                                        |         |   |
| Figure 7: MACD result of I20 P                                             |         |   |
| Figure 8: MACD result of I20_D                                             |         |   |
| Figure 9: MACD result of XUV 500.                                          |         |   |
| Figure 10: EGR tapping pictures of I20 D                                   |         |   |
| Figure 11: EGR tapping pictures of XUV 500.                                |         |   |
| Figure 12: I20_D_EGR Analysis_Laboratory Tests                             | . 1     | 5 |
| Figure 13: Comparison of EGR Opening Duty in I20 D b/w MIDC1 Cold and Hot. |         |   |
| Figure 14: Comparison of EGR Opening Duty in I20_D b/w WLTC1 Cold and Hot  |         |   |
| Figure 15: XUV500_EGR Analysis_Laboratory Tests                            |         |   |
| Figure 16: Comparison of EGR Opening Duty in XUV500 b/w MIDC1 Cold and Hot |         |   |
| Figure 17: Comparison of EGR Opening Duty in XUV500 b/w WLTC1 Cold and Hot |         |   |
| Figure 18: I20_P Emission traces in MIDC Cold 1                            |         |   |
| Figure 19: I20 P Emission traces in WLTC Cold 1                            |         |   |
| Figure 20: I20_P Bag Results.                                              |         |   |
| Figure 21: I20 D Emission traces in MIDC Cold 1                            |         |   |
| Figure 22: I20 D Emission traces in WLTC Cold 1                            |         |   |
| Figure 23: I20_D Engine operating points – WLTC v/s MIDC                   |         |   |
| Figure 24: I20 D Bag Results                                               | .2      | 1 |
| Figure 25: XUV 500 Emission traces in MIDC Cold1.                          | .21     | Ē |
| Figure 26: XUV 500 Emission traces in WLTC Cold1.                          |         |   |
| Figure 27: XUV 500 Engine operating points WLTC v/s MIDC                   |         |   |
| Figure 28: XUV 500 Bag Results                                             |         |   |
| Figure 29: Route 1 (RDE EU)                                                |         |   |
| Figure 30: Speed Trace of I20_D during EU RDE                              |         |   |
| Figure 31: Altitude Trace of I20 P during EU RDE                           |         |   |
| Figure 32: Route 2 (RDE IND).                                              |         |   |
| Figure 33: Speed Trace of I20_D during INDIAN RDE                          |         |   |
| Figure 34: Altitude Trace of I20 Diesel during INDIAN RDE Test             |         |   |
| Figure 35: PEMS setup on vehicles                                          | .31     | 2 |
| Figure 36: Fuel Flow Meter setup in I20_P                                  | .32     | 1 |
| Figure 37: Fuel Flow Meter setup in I20_D & XUV 500 respectively           |         |   |
| Figure 38: CO behavior in I20 P RDE1 EU.                                   | .33     |   |
| Figure 39: CO behavior in I20 P RDE3 IND                                   | 33      |   |
| Figure 40: NOx behavior in I20 D RDE1 EU                                   | .34     |   |
| Figure 41: NOx behavior in I20_D_RDE3_IND                                  | .34     |   |
| Figure 42: CO & NOx behavior in XUV500_RDE1_EU                             | .35     |   |
| Figure 43: CO & NOx behavior in XUV500 RDE3 IND.                           |         |   |
| Figure 44: I20 P RDE total pollutants                                      | .37     |   |
| Figure 45: I20_P RDE total CO2                                             | 37      |   |
| Figure 46: I20_P RDE Fuel Economy                                          | 37      |   |
| Figure 47: I20_D RDE total pollutants                                      | 37      |   |
|                                                                            |         |   |

| C | D | 0 | R  | M   | 0004 |
|---|---|---|----|-----|------|
|   |   | U | 11 | 141 | 0004 |



| Figure 48: I20_D RDE total CO2                                 |    |
|----------------------------------------------------------------|----|
| Figure 49: I20_D RDE Fuel Economy                              |    |
| Figure 50: XUV 500 RDE total pollutants                        |    |
| Figure 51: XUV 500 RDE total CO2                               |    |
| Figure 52: XUV 500 RDE Fuel Economy                            |    |
| Figure 53: Comparison of CO for I20_P: Lab v/s RDE             | 40 |
| Figure 54: Comparison of CO2 for I20_P: Lab v/s RDE            | 40 |
| Figure 55: Comparison of NOx for I20_P: Lab v/s RDE            |    |
| Figure 56: Comparison of CO for I20_D: Lab v/s RDE             |    |
| Figure 57: Comparison of CO2 for I20_D: Lab v/s RDE            | 41 |
| Figure 58: Comparison of NOx for I20_D: Lab v/s RDE            |    |
| Figure 59: Comparison of CO for XUV500: Lab v/s RDE            | 42 |
| Figure 60: Comparison of CO2 for XUV500: Lab v/s RDE           |    |
| Figure 61: Comparison of NOx for XUV500: Lab v/s RDE           |    |
| Figure 62: Comparison of NOx before and after repair of EGR    |    |
| Figure 63: Comparison of HC+NOx before and after repair of EGR | 46 |
|                                                                |    |



| C | D | 0 | R | M     | 0004 |  |
|---|---|---|---|-------|------|--|
| 0 | 2 | 0 |   | 1.4.1 | 0001 |  |



# List of Tables

| Table 1: Vehicles specifications                                      | 7  |
|-----------------------------------------------------------------------|----|
| Table 2: Tests under Task 1                                           | 8  |
| Table 3: List of deliverables                                         | 9  |
| Table 4: Test conditions                                              | 9  |
| Table 5: Chassis dynamometer Lab specifications                       | 10 |
| Table 6: Coast down values                                            | 12 |
| Table 7: Tests under task 2                                           | 25 |
| Table 8: List of parameters to be recorded while RDE testing          |    |
| Table 9: Details of EU conditions route                               |    |
| Table 10: Details of IND conditions route                             | 29 |
| Table 11: Difference b/w EU RDE & Indian RDE Testing                  | 30 |
| Table 12: I20_D CVS v/s PEMS Correlation                              | 33 |
| Table 13: XUV 500 CVS v/s PEMS Correlation                            |    |
| Table 14: Status of EU RDE tests done                                 |    |
| Table 15: Factor of RDE over Lab Limits                               |    |
| Table 16: PEMS specifications                                         | 43 |
| Table 17: List of calibration gases used for calibrating PEMS         | 43 |
| Table 18: Specifications of Fuel flow meter used in I20_P             | 44 |
| Table 19: Specifications of Fuel flow meter used in I20 D and XUV 500 |    |



Innovation • Service • Excellence

| 6 |   | 0 | р | М   | 0004 |
|---|---|---|---|-----|------|
| C | υ | 0 | ĸ | IVI | 0004 |

## 1. Executive Summary:

The International Centre for Automotive Technology (ICAT) was contracted by the International Council on Clean Transportation (ICCT) to conduct in-use testing of three light-duty diesel and petrol vehicles, for correlation of Laboratory v/s PEMS.

Three vehicles were procured for this project.

- Hyundai Elite I20 Petrol (Asta Version)
- Hyundai Elite I20 Diesel (Sportz Version)
- Mahindra & Mahindra XUV 500 W6 with Start-Stop feature

All the tests were performed on above three vehicles as per project plan i.e. Chassis Dynamometer tests and On Road test using PEMS. The test results gave insights on the current emissions levels of three, in-use, popular vehicles sold in Indian Market. Also the data showed the gap between Laboratory v/s On Road Emission levels and provide inputs on potential improvements to vehicle technologies and regulations to improve emissions on the road.

## 2. Background:

The International Council on Clean Transportation (ICCT) is an independent non- profit organization whose mission is to support policymakers around the world in reducing energy consumption and conventional pollutant and greenhouse gas emissions from transportation in order to improve air quality and human health and mitigate climate change.

Serious concerns have been emerged in the last few years over the emission performance of diesel cars in real-world driving conditions. This project is focused towards comparing lab based emissions v/s real world emission measurement. For this, in total 3 cars were tested whose results are presented in the report with detailed analysis. This report mentions specifications of measurement equipments used, the testing methodology, and the conclusion.

While doing real-world emission data collection, vehicles were also driven differently as per EU Real Driving Emissions (RDE) regulatory requirements and actual Indian conditions. It is interesting to note difference in emission levels for each vehicle while being driven as per above two conditions.

## 3. Scope of Work:

Three in-use Vehicles were procured from the market for executing the project. The project consisted of CO2 and exhaust emission measurements on popular Indian Passenger Vehicles. The project was divided in three tasks as below: -

- Chassis dynamometer testing
- Portable emission measurement system (PEMS) testing
- Analysis and report

Under Chassis Dynamometer testing, all the 3 vehicles were required to be tested on MIDC and WLTC cycles in cold and hot start conditions respectively. Repeatability of the results had to be ensured by collecting 2 samples for each test configuration. This activity required second by second

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|

measurement of CO, HC, NOx, PM, PN, CO2, along with final bag results. EGR signal was to be recorded for diesel vehicles.

Under PEMS testing, all the 3 vehicles were required to be tested on Outside Road as per European legislation and Indian conditions respectively to capture Real Driving Emissions. This activity required second by second measurements of CO, NOx, CO2, Fuel flow; along with total results via EMORAD post-processing tool. EGR signal was to be recorded for diesel vehicles.

Data Analysis and report preparation would conclude the project.

## 4. Test Vehicles:

Vehicles had to be procured from secondary market (in-use) as per below conditions: -

- Vehicle age should be less than 3 years.
- Vehicle in proper operational condition with proper service/maintenance records.
- The final vehicles selected should be no older than three years of age, in proper operational condition, and have been operated between 5,000 and 16,000 km per year.

Three vehicles were procured for this project as below: -

- Hyundai Elite I20 Petrol (Asta Version)
- Hyundai Elite I20 Diesel (Sportz Version)
- Mahindra & Mahindra XUV 500 W6 with Start-Stop feature



I20 Petrol



I20 Diesel Figure 1: Vehicles procured



**XUV 500** 

Specification of the vehicles was as below: -

| Parameters             | Vehicles                       |                                |                                          |  |  |  |
|------------------------|--------------------------------|--------------------------------|------------------------------------------|--|--|--|
| Parameters             | I20 Petrol                     | I20 Diesel                     | XUV 500                                  |  |  |  |
| Registration Date      | 27-May-2015                    | 09-Nov-2015                    | 06-May-2015                              |  |  |  |
| Odometer Reading       | 16412 kms                      | 12157 kms                      | 13328 kms                                |  |  |  |
| Previous Owner         | 1 <sup>st</sup> (Personal use) | 1 <sup>st</sup> (Personal use) | 1 <sup>st</sup> (Personal use)           |  |  |  |
| Any Accidental History | No                             | No                             | No                                       |  |  |  |
| Fuel                   | Petrol                         | Diesel                         | Diesel                                   |  |  |  |
| Engine Size,cc         | 1197                           | 1396                           | 2179                                     |  |  |  |
| Major Technology       | VVT                            | Common Rail,<br>EGR, Non-DPF   | Common Rail, EGR,<br>Non-DPF, Start-Stop |  |  |  |

**Table 1: Vehicles specifications** 

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|

| Torque(kg.m)           | 11.7@4000      | 22.4@1500-2750 | 33.0@1600-2800 |
|------------------------|----------------|----------------|----------------|
| Power ( kw)            | 62             | 55.2           | 103            |
| TA FE(kmpl)/CO2(gm/km) | 18.6 /127.1    | 21.9 / 122.4   | 15.2 / 176.4   |
| Emission Compliance    | BS IV M1 Class | BS IV M1 Class | BS IV M3 Class |
| Vehicle Weight         | 1080           | 1161           | 1860           |

All three vehicles were thoroughly checked for any possible engine or after-treatment malfunction diagnostic trouble codes (DTC) using an Engine Control Unit (ECU) scanning tool before starting test activities. All the vehicles were found in good mechanical condition and none of them showed any OBD fault code or other anomalies.

The Diesel and Petrol fuel used for this project was from commercially available supply in India. Fuel used for all three test vehicles were collected from the single batch during entire project

Please note that XUV 500's Start-Stop feature was always kept Activated during both Chassis as well as PEMS testing.

## **5. Project Activities:**

The project was divided in 3 Tasks as below: -

- Task1: Chassis dynamometer testing
- Task2: Portable emission measurement system (PEMS) testing
- Task3: Analysis and report

## 5.1 Task 1: Chassis Dynamometer Testing

Following activities were planned under Task 1: -

- To run standard emission cycles and measure the fuel consumption data and legislative regulated emission species (NOx, HC & CO) on three vehicles on chassis dynamometer test.
- PM & PN (particulate number) were to be measured for diesel vehicles only.
- Emission tests to be done on 4X4 chassis dyno for both petrol and diesel vehicles.

Task 1 required vehicle emission testing over two different regulatory test cycles viz. Modified Indian Driving Cycle (MIDC) and Worldwide Harmonized Light Vehicle Test Cycle (WLTC). For each regulatory cycle, two sets of cold start and hot start emission test had to be performed. Cold test was started after the overnight soaking and hot test was started immediately after 30 minutes of end of cold test. Total number of emissions tests planned under Task1 is given as below:

| Vahiala    | MIDC |     | WLTC |     | Tatal |
|------------|------|-----|------|-----|-------|
| Vehicle    | Cold | Hot | Cold | Hot | Total |
| I20 Petrol | 2    | 2   | 2    | 2   | 8     |
| I20 Diesel | 2    | 2   | 2    | 2   | 8     |
| XUV 500    | 2    | 2   | 2    | 2   | 8     |
|            |      |     |      |     | 24    |

| Table 2: T | 'ests under | Task 1 |
|------------|-------------|--------|
|------------|-------------|--------|

| С | D | 0 | R | М | 0004 |
|---|---|---|---|---|------|
| - | - | - |   |   |      |

## 5.1.1 Task 1 - Deliverables:

Second by second data and total bag results data to be captured during all emissions tests for following pollutants. Fuel Consumption based on carbon balance method also to recorded. EGR data was also to be captured for diesel vehicles.

| Emissions       | Diesel | Petrol |
|-----------------|--------|--------|
| HC              |        | ~      |
| NOx             | ✓      | ~      |
| HC+NOx          | ✓      | N/A    |
| СО              | ✓      | ~      |
| CO <sub>2</sub> | ✓      | ~      |
| PM              | ✓      | N/A    |
| PN              | ✓      | N/A    |

#### 5.1.2 Task 1 - Test Setup and Methodology:

Emission tests over two regulatory cycles had to be run on Chassis dynamometer. Test conditions used for consistency are defined as below:-

| Test conditions                                        | Test values                  |
|--------------------------------------------------------|------------------------------|
| Ambient air température (deg C)                        | 23±2                         |
| Absolute Humidity                                      | 5.5 to 12.2 g H2O/kg dry air |
| Chassis Dyno drive mode                                | 4x4                          |
| Vehicle soak time for Cold test                        | Overnight soaking            |
| Time between End of Cold test<br>and Start of hot test | 30 minutes                   |

| Table | 4.   | Test | conditions |
|-------|------|------|------------|
| Lane  | : 4: | rest | continuous |

Layout and Technical Specification of Chassis Dynamometer and Analyzer set used are depicted here.

N/A: Not Applicable

## C D 0 R M 0004

Date : 29/03/2017

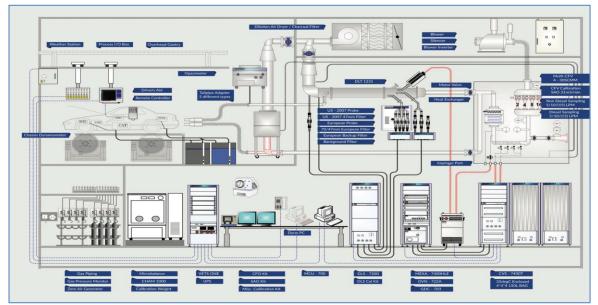
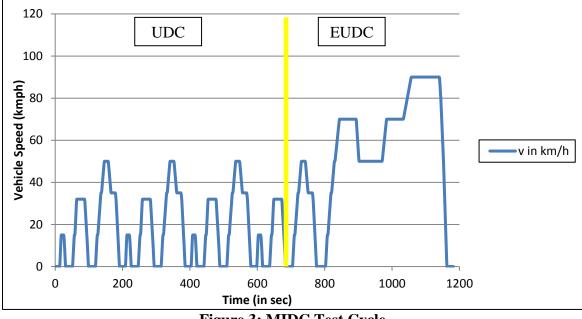



Figure 2: Chassis Dynamometer and Analyzer Layout

| Table 5. Chassis dynamometer Lab specifications                                           |                                               |                                                                                                                                                                                                             |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Equipment                                                                            | Make-Model                                    | Specifications                                                                                                                                                                                              |  |  |  |
| Dynamometer AVL Emission Test<br>Systems, GMBH<br>1219.2 mm AC<br>machine Chassis<br>Dyno |                                               | Base inertia per axle :approx 1300Kg<br>Inertia range per axle: approx. 454 Kg (1000 lbs) – 5,400<br>Kg (12,000 lbs)<br>Maximum speed: 250 Km/h<br>Maximum axle load: approx. 4,500 Kg                      |  |  |  |
| Constant Volume<br>Sampler (CVS)                                                          | HORIBA Emission<br>Test Systems,<br>CVS 7400T | Availability of four critical flow venturis (CFV) of 2,4,8<br>and 12 m3/min, up to 13 different<br>flow rates shall be automatically selectable with a<br>maximum flow rate of 30 m3/min                    |  |  |  |
| PN Counter AVL                                                                            |                                               | All standard Interfaces like TCP/IP, RS 232 and CAN Bus<br>(all with AK-Protocol) as well as Digital/Analog-IO are<br>available to ensure an easy integration into different<br>automation systems          |  |  |  |
| РМ                                                                                        | HORIBA                                        | DLS-7100 particulate sampling system controls and<br>monitors the sample through the particulate filters,<br>PM filter media 47mm and 70mm filter assemblies,<br>70mm filter supplied with a backup filter. |  |  |  |


## Table 5: Chassis dynamometer Lab specifications

The test cycles were configured in Driver's Aid software of Chassis Dynamometer Lab. Details of the cycles are given here.

## MIDC

MIDC is Modified Indian Drive Cycle which is used as a standard cycle in India for Type-1 test of BSIV 4 wheeled vehicles as per TAP document. Maximum vehicle speed in MIDC is limited to 90 kmph.

| С | D | 0   | R | М | 0004 | Date : 29/03/2 | 017 |      |  |
|---|---|-----|---|---|------|----------------|-----|------|--|
|   |   |     |   |   |      |                |     |      |  |
|   |   |     |   |   |      |                |     |      |  |
|   |   | 120 |   |   |      |                |     | EUDC |  |



## Figure 3: MIDC Test Cycle

## <u>WLTC</u>

WLTC is Worldwide Harmonized Light Vehicle Test Cycle that has been developed by the UN ECE GRPE (Working Party on Pollution and Energy) group and is defined under Worldwide harmonized Light vehicles Test Procedure (WLTP) ECE/TRANS/WP.29/2016/68e.

There are 3 classes of WLTC test cycles depending on power-to-mass ratio (PMR parameter is defined as the ratio of "Rated Power in W / Curb mass in Kg") and the maximum vehicle speed (v\_max) as declared by the manufacturer. All the three 3 test vehicles viz. I20\_P, I20\_D & XUV500 fall under Class 3 category Please refer below for more details: -

| Category | PMR, W/kg         | Speed Phases                  | Comments                                                                                                                                                 |
|----------|-------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 3  | PMR > 34          | Low, Middle, High, Extra-High | If v_max < 135 km/h, phase 'extra-high' is replaced by a repetition of phase 'low'.                                                                      |
| Class 2  | $34 \ge PMR > 22$ | Low, Middle, High             | If v_max < 90 km/h, phase 'high' is replaced by a repetition of phase 'low'.                                                                             |
| Class 1  | PMR ≤ 22          | Low, Middle                   | If v_max $\geq$ 70 km/h, phase 'low' is repeated after phase 'middle'.<br>If v_max < 70 km/h, phase 'middle' is replaced by a repetition of phase 'low'. |

## Figure 4: WLTC test cycle classes

Under Class 3, there are 4 speed phases viz. Low, Middle, High and Extra-High. However, the extra high speed phase was excluded from chassis testing emission measurement. It was only used to determine the Real Driving Emissions characteristic curve CO2 values (g/km) for motorway phase.

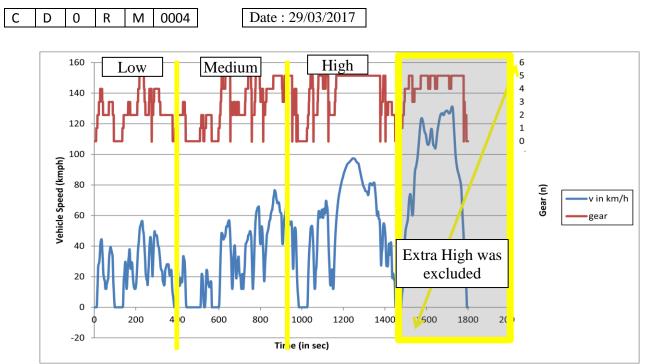



Figure 5: WLTC Test cycle

## Road Load Equation values

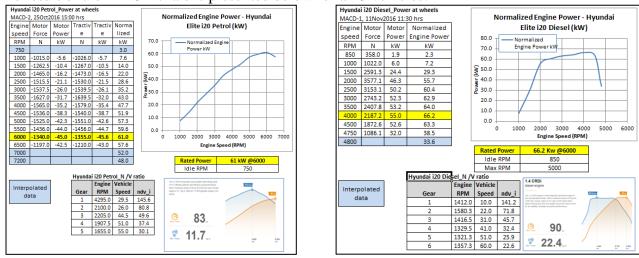
Road Load Equation values of all 3 vehicles, to be used for both MIDC and WLTC were calculated as per WLTP procedure ECE/TRANS/WP.29/2016/68e. Details are given in below table.

| Table 6: Coast down values          |             |                 |                  |  |  |  |  |  |
|-------------------------------------|-------------|-----------------|------------------|--|--|--|--|--|
| Parameters                          | Elite i20 P | Elite i20 D     | XUV 500 W6       |  |  |  |  |  |
| V max (kmph)                        | 154         | 165             | 180              |  |  |  |  |  |
| Tire (drr in m)                     | 0.298       | 0.298           | 0.358            |  |  |  |  |  |
| Tire (drr in m)                     | 185/ 70 R14 | 185/ 70 R14     | 235/65 R17       |  |  |  |  |  |
| Eng Power (PS)                      | 83@6000     | 90@4000         | 140@3750         |  |  |  |  |  |
| Eng Power(W)                        | 61046.5     | 66195           | 102970           |  |  |  |  |  |
| Unlaiden wt (kg)                    | 1080        | 1161            | 1860             |  |  |  |  |  |
| GVW                                 | 1515        | 1630            | 2450             |  |  |  |  |  |
| Power/Wt ratio                      | 56.5        | 57.0            | 55.4             |  |  |  |  |  |
| WLTC Class                          | 3b          | 3b              | 3b               |  |  |  |  |  |
| Mass in running order               | 1155        | 1155 1236       |                  |  |  |  |  |  |
| Actual Mass                         | 1155        | 1236            | 1971             |  |  |  |  |  |
| Maximum Veh Load                    | 335         | 369             | 454              |  |  |  |  |  |
| Mass representative of vehicle load | 50.25       | 55.35           | 68.1             |  |  |  |  |  |
| Test mass of the vehicle            | 1230.25     | 1316.35         | 2064.1           |  |  |  |  |  |
| Type Approval F.E. (kmpl)           | 18.6        | 21.9            | 15.2             |  |  |  |  |  |
| CO2                                 | 127.1       | 122.4           | 176.4            |  |  |  |  |  |
| Torque (kg.m)                       | 11.7@4000   | 22.4@ 1500-2750 | 33.0 @ 1600-2800 |  |  |  |  |  |
| Width (mm)                          | 1734        | 1734            | 1890             |  |  |  |  |  |
| Height (mm)                         | 1505        | 1505            | 1785             |  |  |  |  |  |
| Gears                               | 5           | 6               | 6                |  |  |  |  |  |
| f0                                  | 172.235     | 184.289         | 288.974          |  |  |  |  |  |
| f1                                  | 0           | 0               | 0                |  |  |  |  |  |
| f2                                  | 0.0478      | 0.0481          | 0.0631           |  |  |  |  |  |

Table 6: Coast down values

|   | 1 |   |   |   |      |
|---|---|---|---|---|------|
| С | D | 0 | R | Μ | 0004 |
|   |   |   |   |   |      |

## Gear shift points in WLTC


Gear shift points during WLTC were calculated differently for each vehicle as per WLTP procedure ECE/TRANS/WP.29/2016/68e. For this purpose, Heinz Steven tool ver. 02.06.2016 was used to input all relevant data and output gear shift points.

| 1                  | Choose a vehic                      | le from the list below, insert a case o<br>click on the "calculate | lescription or modify the existing one and then gearshifts" button. |                                      |
|--------------------|-------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|
|                    | © WI<br>⊂ NEI                       | -                                                                  |                                                                     |                                      |
|                    |                                     | choose vehicle_no                                                  | flag2                                                               |                                      |
|                    | ,                                   | apply speed cap < v_max cycle                                      | cycle part                                                          |                                      |
| The additio        | nal safety margin                   | apply additional safety margin                                     | time in s                                                           |                                      |
| ASM0 is f<br>n_sta | fully applied at<br>int and then    |                                                                    |                                                                     |                                      |
| 0,5%               | ially reduced to<br>at n_end.       |                                                                    | case description                                                    |                                      |
| ASM button         | push the "Save<br>in order to apply |                                                                    |                                                                     |                                      |
| t                  | he ASM.                             |                                                                    | Calculate gearshifts Check results                                  | Check average n                      |
| test mass          | 1352                                | Check wot curve                                                    | Export results to Excel Check wot percentage                        | Check Pres (kWh)                     |
| idling speed       | 850                                 | rated speec 4000                                                   | Check tolerance violations                                          | Check for Pmax <pres< th=""></pres<> |
| v_max              | 156                                 | no_gear: 6 g_vmax 5                                                | Check number of upshifts                                            | Check number of<br>downshifts        |
| n_max1             | 2998                                | n_max2 3401                                                        | Close                                                               |                                      |
| n_min_driv         | 1244                                | f_DSC_req 0.00%                                                    |                                                                     |                                      |
|                    | 110 - 21                            | modify n_min_drive                                                 | 1                                                                   |                                      |

Figure 6: Gear shift points in WLTC

In order to use Heinz Steven tool for calculating Gear Shift points for each vehicle during WLTC cycle, following tests were done on MACD: -

- 1. Power at wheels to derive Engine WOT (Wide Open Throttle) curve in Nm.
- 2. Ndv ratio Engine Speed (N) / Vehicle Speed (kmph) ratio.



The result of the MACD trials is presented below for all 3 vehicles: -

Figure 7: MACD result of I20\_P

Figure 8: MACD result of I20\_D

| C D 0 R M 0004 |
|----------------|
|----------------|

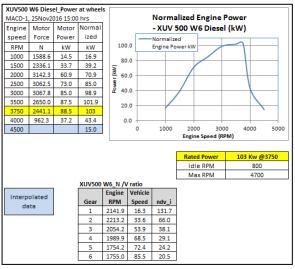



Figure 9: MACD result of XUV 500

## EGR Capturing Methodology:

I20 Petrol: This vehicle being BS IV petrol vehicle didn't have EGR so there was no provision for tapping the signal

I20 Diesel: This vehicle had a solenoid valve for EGR operation whose signal was controlled from ECU. It didn't have any feedback mechanism. Solenoid valve had three wire connector; one out of which was reference voltage (battery voltage), other reference ground & third one had solenoid actuator signal from the ECU.

Ratio of actuator signal voltage and reference signal voltage in percentage was considered as Actual EGR duty. This signal got correlated well with Commanded EGR signal received from the OBD port.

Picture of set-up is as below:

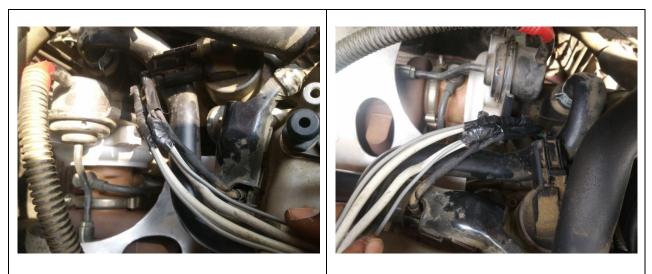



Figure 10: EGR tapping pictures of I20\_D

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|

<u>XUV500</u>: XUV 500 vehicle has vacuum controlled EGR. Vacuum hose going to EGR valve was tapped and vacuum going to EGR was measured with a pressure transducer of range -1 to +1 barg. Surface temperature after EGR valve was also recorded during laboratory testing. Picture of set-up is as below:

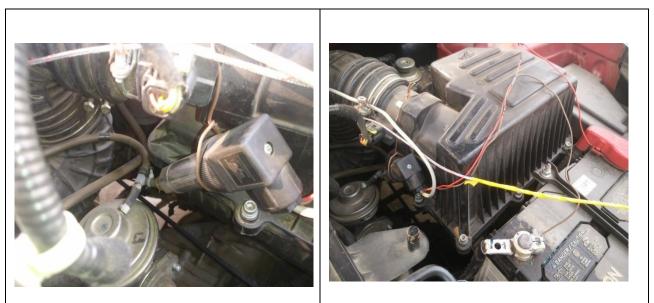
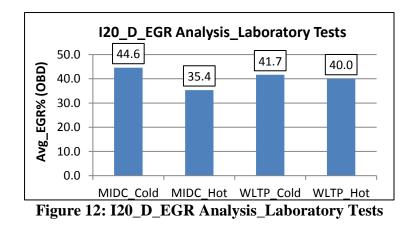



Figure 11: EGR tapping pictures of XUV 500

## 5.1.3 Task1 - Results:


## EGR data analysis:

EGR data was captured on both the vehicles during Task1 Emission tests.

In case of I20\_D, the EGR duty was captured in range of 0 to 100%. The EGR behavior was found to be satisfactory in all the MIDC and WLTC tests. However, there are 3 observations as below: -

- Relatively EGR works more in case cold start than in case of hot start.
- Between MIDC and WLTC, WLTC has lesser EGR average opening rate relatively.
- The outcomes can be correlated to NOx results also.

The comparison of average EGR opening rate in I20\_D is presented below.



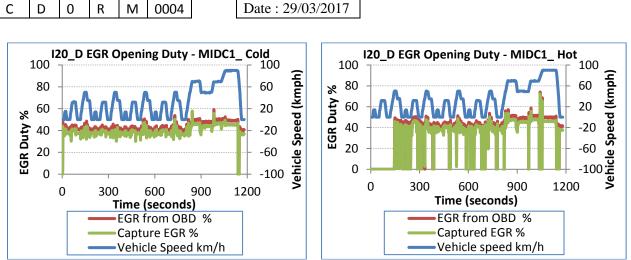



Figure 13: Comparison of EGR Opening Duty in I20\_D b/w MIDC1 Cold and Hot

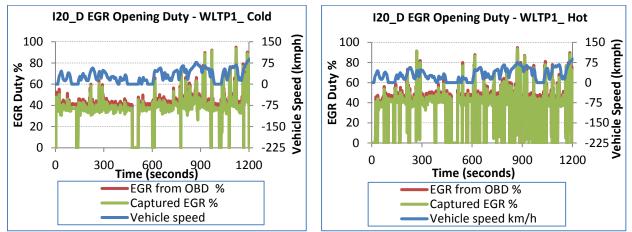



Figure 14: Comparison of EGR Opening Duty in I20\_D b/w WLTC1 Cold and Hot

In case of XUV500, the EGR behavior was found almost similar in Cold and Hot conditions. However, EGR worked more frequently in WLTC as compared to MIDC. The comparison of average EGR opening vacuum in XUV500 is presented below.

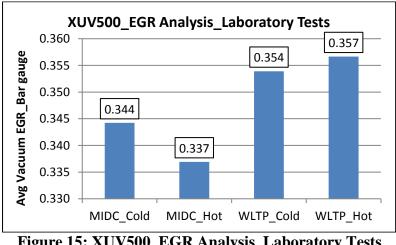



Figure 15: XUV500\_EGR Analysis\_Laboratory Tests

С D 0 R Μ 0004

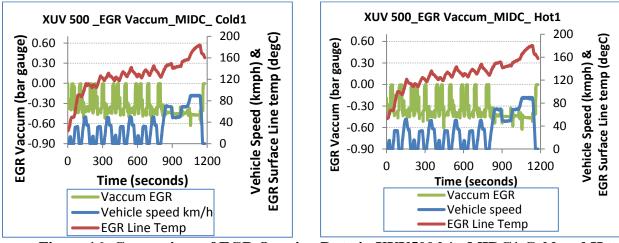



Figure 16: Comparison of EGR Opening Duty in XUV500 b/w MIDC1 Cold and Hot

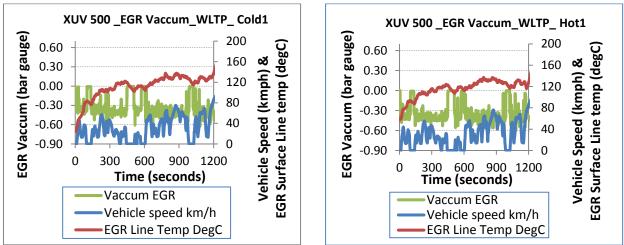
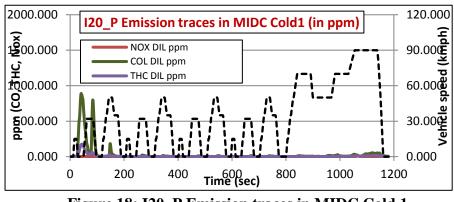
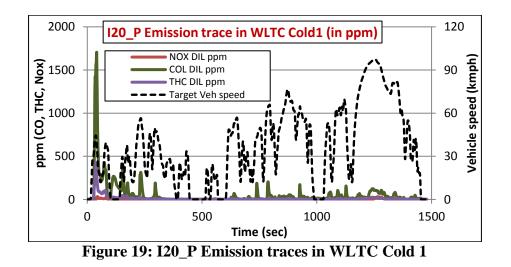
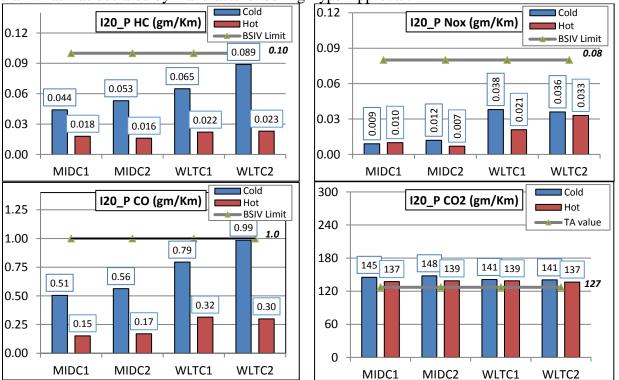


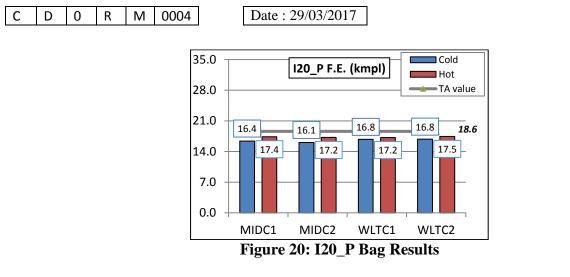

Figure 17: Comparison of EGR Opening Duty in XUV500 b/w WLTC1 Cold and Hot

Emission Results:

I20 Petrol – Modal Traces:

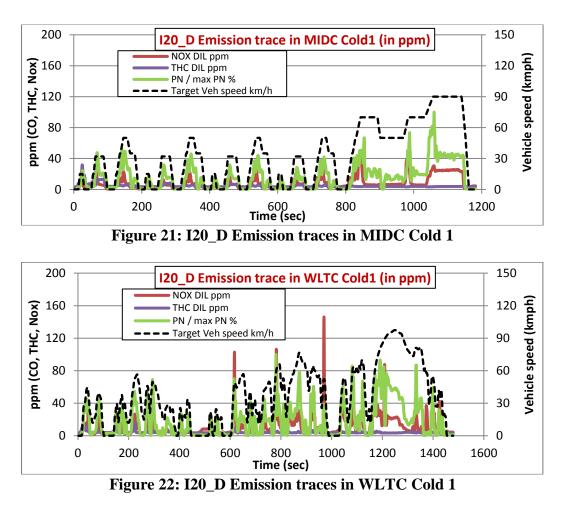
Second by second modal data was logged successfully for I20\_P. The data shows that CO and THC were high only in first 3-4 minutes of cold start. Afterwards the emission was very low probably due to catalytic convertor's light-off. The detailed Modal Traces behavior of I20\_P is presented below.



Figure 18: I20\_P Emission traces in MIDC Cold 1

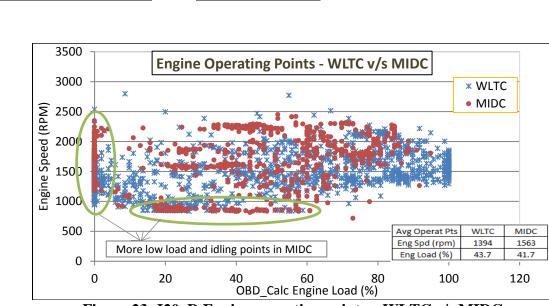


I20 Petrol – Bag Results:


Vehicle passed within BSIV M1 category limits and Fuel Economy value came 1 to 2 kmpl lesser than what was declared by manufacturer during Type Approval.






I20 Diesel – Modal Traces:

Second by second modal data was logged successfully for I20\_D. The data shows that NOx traces are relatively higher in WLTC as compared to MIDC, probably due to more aggressive accelerations. The detailed Modal Traces behavior of I20\_D is presented below.



I20 Diesel – Bag Results:

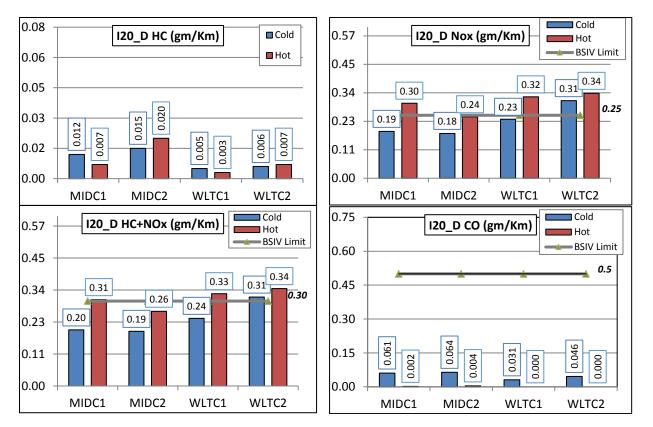
Below plot shows comparison between engine operating points during WLTC and MIDC. The WLTC has wider range of both engine load and engine speed.

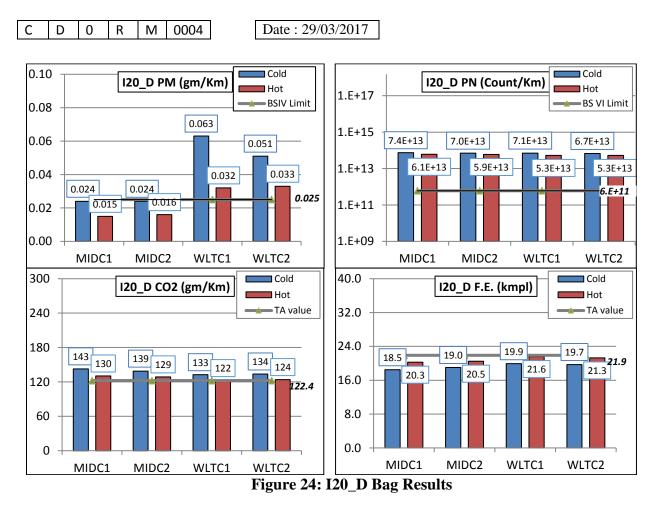


С

D

0


R


Μ

0004

Figure 23: I20\_D Engine operating points – WLTC v/s MIDC

I20 Diesel vehicle passed within BSIV M1 category limits and Fuel Economy value also came 1.5 to 2.5 kmpl lesser than what was declared by manufacturer during Type Approval. The detailed plots are given below: -





XUV500 – Modal Traces:

Second by second modal data was logged successfully for XUV 500. The data shows that NOx trace is relatively higher in WLTC as compared to MIDC, probably due to more aggressive accelerations in WLTC cycle. The detailed Modal Traces behavior of XUV 500 is presented below.

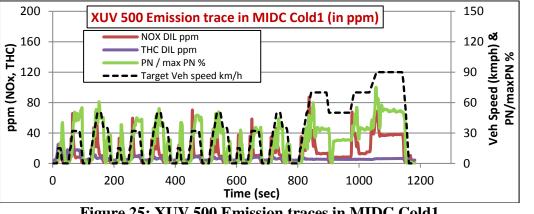
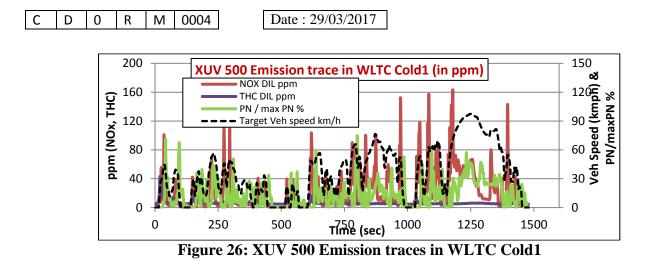




Figure 25: XUV 500 Emission traces in MIDC Cold1



XUV 500 – Bag Results:

Below plot shows comparison between engine operating points during WLTC and MIDC.

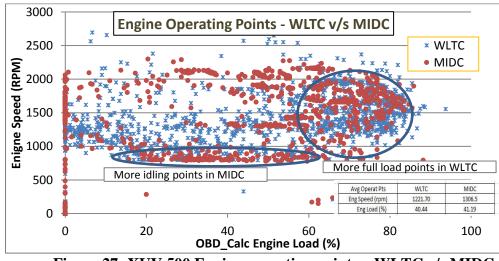
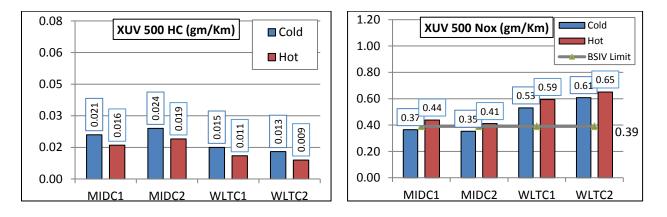
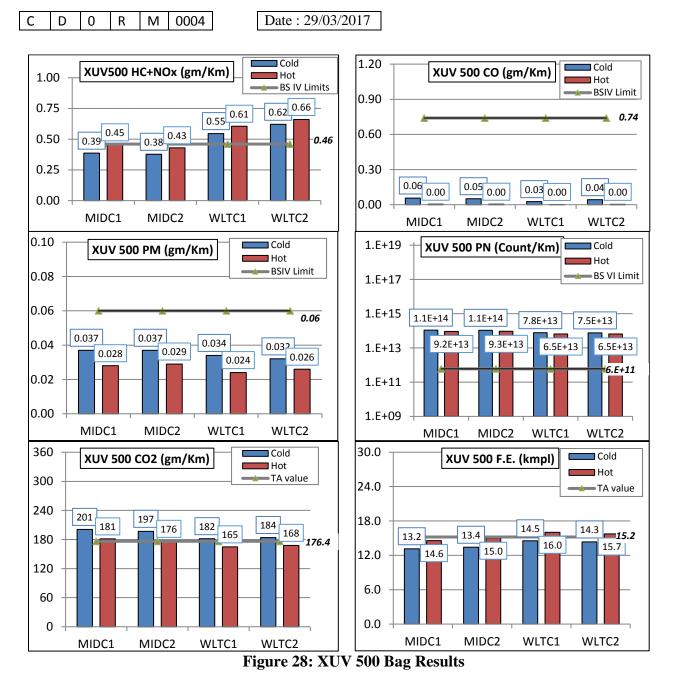





Figure 27: XUV 500 Engine operating points – WLTC v/s MIDC

XUV 500 vehicle passed within BSIV M3 category limits and Fuel Economy value came 0.5 to 2.0 kmpl lesser than what was declared by manufacturer during Type Approval. Please see the figures below.





## 5.1.4 Task1 - Conclusions:

## Emission Compliance w.r.t. BSIV regulatory limits

- Firstly, all the three vehicles passed under BSIV cold start MIDC regulatory emissions norms.
- In case of I20\_P Cold MIDC testing, CO and HC passed with around 50% margin and NOx passed with 87% margin. It can be concluded that this vehicle's emission levels are comfortably lower than allowed limits.
- In case of I20\_D Cold MIDC testing, CO passed 87% margin, NOx passed with 27% margin and HC+NOx passed with 35% margin. However PM passed with margin of just 4%. It can be concluded that this vehicle's emission levels are just meeting the allowed limits.

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|

- In case of XUV500 Cold MIDC testing, CO passed with 93% margin and PM passed with 38% margin. However NOx passed with just 8% margin and HC+NOx passed with 17% margin. It can be concluded that this vehicle's emissions are just meeting the allowed limits.
- To summarize, Petrol Vehicle passes with healthy margin of minimum 50% whereas Diesel Vehicles have less than 10% margin either in NOx or PM.

Comparison of WLTC cold emissions over MIDC cold emissions

- When tested for WLTC, I20\_P's CO and HC emissions increased by 60 to 65% while NOx increased by factor of 3.5. This increase in emissions over MIDC may be attributed to relatively more aggressive accelerations and hence more fluctuations in stoichiometric ratio. However, WLTC emission results are still within BSIV limits.
- In case of I20\_D, CO and HC emissions reduced by factor of 0.4 to 0.6 while NOx and PM increased by factor of 1.5 and 2.4 respectively. To be noted here, WLTC's PM results surpassed BSIV limits by margin of 128%.
- In case of XUV500, CO and HC emissions reduced by factor of 0.6 while NOx increased by factor of 1.6. Surprisingly, PM reduced by 11% as compared to MIDC. To be noted here, WLTC's NOx results surpassed BSIV limits by margin of 46%.
- To summarize, WLTC emissions are higher than MIDC emissions for both Petrol and Diesel vehicles.

#### Delta change in Hot emissions over Cold emissions

- In case of I20\_P, CO and HC emissions reduced by 68% and NOx reduced by 23%. The reason behind reduced emissions in hot start test may be attributed to faster light-off of catalyst.
- In case of I20\_D, CO and HC emissions reduced to almost NIL whereas NOx increased by 35% and PM reduced by 39%.
- In case of XUV500, CO and HC emissions reduced to almost NIL whereas NOx increased by 14% and PM reduced by 24%.
- Overall, emissions reduce by big percentage in Hot emissions as compared to Cold emissions in Petrol vehicles. In case of Diesel vehicles, NOx has increased and PM has reduced by considerable percentage.

#### Particulate Number in Diesel Vehicles

• Since both the diesel vehicles are Non-DPF BSIV vehicles, the Particulate Number (PN) has been recorded in the range of 5.0×10^-13 to 1.0×10 ^-14 which is almost at least 1000 to 1500 times higher than proposed BSVI limit of 6.0×10 ^-11.

|   |   | 1 | 1 |   |      |
|---|---|---|---|---|------|
| С | D | 0 | R | Μ | 0004 |

## Fuel Economy trends

- For all the 3 vehicles, F.E. recorded in MIDC Cold cycles has been at least 2kmpl lesser that what was declared by Manufacturer at the time of Type Approval. This difference has come out probably due to road load equation values that were calculated as per WLTP procedure and are more representative of drag forces on real roads.
- However, Fuel Economy (F.E.) has come 0.5 to 1.0 kmpl better in WLTC cycle as compared to MIDC cycle for all the 3 vehicles. Please note that the WLTC does not include the Extra high speed section of that drive cycle.

## 5.2: Task 2: PEMS Testing

Following activities were planned under Task 2: -

- PEMS route test selection.
- The EU test route was to consist of urban driving followed by rural and motorway according to the shares specified and speed/acceleration patterns described in the EU legislation 2016/427 (first RDE regulatory package) and (EU) 2016/646 (second RDE regulatory package).
- IND test route was to be selected that did not follow the legislative RDE cycle but representative of real driving conditions in India. Vehicle had to follow local speed limits.
- Collection of Real Driving Emissions (RDE) over both the routes for all 3 vehicles.
- Perform data post processing and analysis as per the regulatory guidelines. This includes time alignment, drift correction, NOx corrections for temperature and humidity and instantaneous emission calculations.

Total number of RDE tests planned under Task2 is given as below:

| Table /: Tests under task 2 |                                     |                             |       |  |  |
|-----------------------------|-------------------------------------|-----------------------------|-------|--|--|
| Vehicle                     | RDE as per European Union procedure | RDE as per Indian condition | Total |  |  |
| I20 Petrol                  | 2                                   | 1                           | 3     |  |  |
| I20 Diesel                  | 2                                   | 1                           | 3     |  |  |
| XUV 500                     | 2                                   | 1                           | 3     |  |  |
|                             | Total Tests                         |                             | 9     |  |  |

 Table 7: Tests under task 2

#### **5.2.1 Task 2- Deliverables:**

PEMS data collected, route test data, raw and processed (corrected, time aligned) in CSV format (1 Hz sampling rate) for all routes. General requirement for PEMS measurement were provided from ICCT based on guidelines from the draft Real Driving Emissions (RDE) PEMS measurement for passenger vehicles. List of parameters to be recorded is given below: -

| C D | 0 | R | М | 0004 |
|-----|---|---|---|------|
|-----|---|---|---|------|

|      | Tuble 0. List of parameters to be recorded while ADD testing |             |                 |                                                 |  |  |
|------|--------------------------------------------------------------|-------------|-----------------|-------------------------------------------------|--|--|
| S.NO | Parameter                                                    | Unit        | Source          | Possibility of measurement using PEMS (Yes/ No) |  |  |
| 1    | CO concentration                                             | ppm         | Analyzer        | Yes                                             |  |  |
| 2    | NOx concentration                                            | ppm         | Analyzer        | Yes                                             |  |  |
| 3    | NO/NO2 speciation                                            | ppm         | Analyzer        | Yes                                             |  |  |
| 4    | CO2 concentration                                            | ppm         | Analyzer        | Yes                                             |  |  |
| 5    | Exhaust gas flow                                             | kg/h        | EFM             | Yes                                             |  |  |
| 6    | Exhaust temperature                                          | К           | EFM             | Yes                                             |  |  |
| 7    | Ambient temperature                                          | К           | Sensor          | Yes                                             |  |  |
| 8    | Ambient Pressure                                             | КРа         | Sensor          | Yes                                             |  |  |
| 9    | Ambient Humidity                                             | %           | Sensor          | Yes                                             |  |  |
| 10   | Engine Torque                                                | Nm          | OBD Port        | Yes**                                           |  |  |
| 11   | Engine Speed                                                 | RPM         | OBD Port        | Yes                                             |  |  |
| 12   | Engine Fuel Flow                                             | g/s         | Fuel Flow Meter | Yes                                             |  |  |
| 13   | Engine Coolant Temp                                          | К           | Sensor          | Yes                                             |  |  |
| 14   | Engine Intake Air Temp                                       | К           | Sensor          | Yes                                             |  |  |
| 15   | Vehicle ground speed                                         | Km/h        | GPS             | Yes                                             |  |  |
| 16   | Vehicle latitude/longitude                                   | degree      | GPS             | Yes                                             |  |  |
| 17   | Vehicle Altitude                                             | Meter       | GPS             | Yes                                             |  |  |
| 18   | EGR valve opening                                            | % or on-off |                 | Yes, External Tapping                           |  |  |

| Table 8: List of parameters to be recorded while RDE testing | Table 8: List of | parameters to be recorded while RDE | testing |
|--------------------------------------------------------------|------------------|-------------------------------------|---------|
|--------------------------------------------------------------|------------------|-------------------------------------|---------|

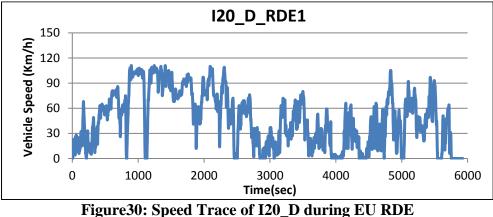
\*\* Calculated Load from OBD was recorded instead of Engine torque as engine torque data was not available on OBD.

## 5.2.2 Task 2- Test Setup and Methodology:

#### European (EU) RDE Test Route Selection:

Simulated European (EU) route for RDE testing started from ICAT and finished back at ICAT.

Route was selected considering following regulatory EU parameters:


- Route shall have minimum urban share of 29 % and max of 44 %, rural share as 33% +-10% & motorway share as 33% +-10%.
- Duration of trip in terms of kilometers shall be such that it covers minimum 16 kms of each urban, rural and motorway share.
- Total Trip Time Duration shall be b/w 90 -120 minutes.
- Average velocity over the complete route shall be b/w 15-40 km/h.

| С | D | 0 | R | М | 0004 |
|---|---|---|---|---|------|
| - | _ | • |   |   |      |



Figure 29: Route 1 (RDE EU)

Speed trace over the complete route for one vehicle (i20 Diesel) for route representation is shown below:



Altitude trace over the complete route for one vehicle (i20 Petrol) for route representation is shown below:

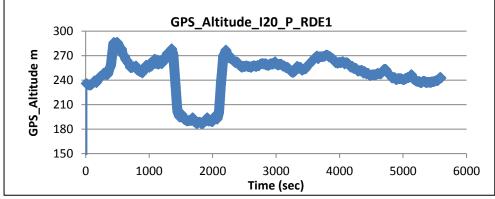
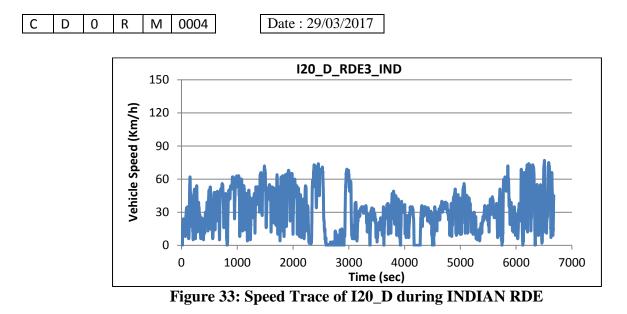



Figure 31: Altitude Trace of I20\_P during EU RDE

| С | D | 0 | R | М | 0004 |
|---|---|---|---|---|------|
|   |   |   |   |   |      |

Driving details of the complete route are as below:

| Table 9: Details of EU conditions route |                                                                                                 |                          |                                                                                       |  |  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Location From                           | Location To                                                                                     | Approx<br>Distance (Kms) | Speed Ranges                                                                          |  |  |  |  |
| ICAT                                    | National Highway-8<br>(NH-8)                                                                    | 1.0                      | Vehicle was driven in the range 0-90 kmph (i.e. urban                                 |  |  |  |  |
| NH-8                                    | Panchgaon                                                                                       | 10.0                     | and rural patches)                                                                    |  |  |  |  |
| Panchgaon                               | Kundi Manesar Palwal<br>Expressway                                                              | 20.0                     | Mainly Motorway speeds<br>(90 kmph and above) were<br>covered in this area.           |  |  |  |  |
| Kundi Manesar Palwal<br>Expressway      | Areas of Tauru Village<br>till back to NH-8 near to<br>BML Munjal University<br>(Kapdiwas area) | 20.0                     | Vehicle was driven mainly<br>in the range 0-90 kmph (i.e.<br>urban and rural patches) |  |  |  |  |
| NH-8 (BML University)                   | ICAT                                                                                            | 20.0                     | Vehicle was driven mainly<br>in the range 0-90 kmph (i.e.<br>urban and rural patches) |  |  |  |  |
| Total Approx Distance (                 | km)                                                                                             | 71.0                     |                                                                                       |  |  |  |  |


### **INDIAN RDE ROUTE DETAILS:**

Indian (IND) route was selected to reflect actual Indian road conditions, following local speed limits enroute. Vehicle was driven in three speed ranges (0-40, 40-60, 60-80 kmph).



Figure 32: Route 2 (RDE IND)

Speed trace over the complete route for one vehicle (i20 Diesel) for route representation is shown below:



Altitude trace over the complete route for one vehicle (i20 Petrol) for route representation is shown below:

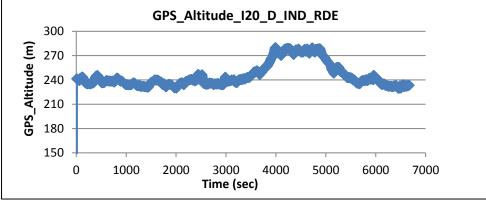



Figure 34: Altitude Trace of I20 Diesel during INDIAN RDE Test

Driving details of the complete route are as below:

| Location From              | Location To               | Approx<br>Distance (kms) | Speed Ranges                                                           |  |  |  |  |
|----------------------------|---------------------------|--------------------------|------------------------------------------------------------------------|--|--|--|--|
| ICAT                       | National Highway          | 15.0                     | Driven in range 0-80 kmph. It was easier to get speed above 40 kmph    |  |  |  |  |
| NH-8                       | Naurangur village         | 8.0                      | Driven in range 0-80 kmph. It was<br>easier to get speed above 40 kmph |  |  |  |  |
| Start of Naurangur village | Kota Village              | 10.0                     | Vehicle was driven in 0-40 Kmph                                        |  |  |  |  |
| Start of Kota Village      | Back of Main road of NH-8 | 10.0                     | speed range                                                            |  |  |  |  |
| Main road                  | ICAT                      | 5.0                      | Driven in range of 0-80 kmph. It was easier to get speed above 40 kmph |  |  |  |  |
| Total Approx Distance (km) |                           | 48.0                     |                                                                        |  |  |  |  |

#### **Table 10: Details of IND conditions route**

| ĥ |   |   |   |   |   |      |
|---|---|---|---|---|---|------|
|   | С | D | 0 | R | Μ | 0004 |

## Difference b/w EU RDE and Indian RDE Routes:

Following were major differences b/w EU RDE & Indian RDE testing; rest test requirements & procedures were maintained same:

| S.<br>No | Parameters                     | EU RDE Testing                                                                         | Indian RDE Testing                                                                    |
|----------|--------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1        | Speed Limits                   | As per EU legislative requirements                                                     | As per local permissible limits in<br>India i.e. 80 kmph                              |
| 2        | Driving shares<br>speed Limits | Urban limit Up to 60 kmph<br>Rural limit 60 to 90 kmph<br>Motorway limit90 to 135 kmph | Urban limit Up to 40 kmph<br>Rural limit 40 to 60 kmph<br>Motorway limit60 to 80 kmph |
| 3        | Route Distance                 | Approx 70 kms                                                                          | Approx 50 kms                                                                         |

### Table 11: Difference b/w EU RDE & Indian RDE Testing

## General Guidelines for PEMS Testing:

In order to get accurate data, following were kept in mind:

- The vehicle was driven vehicle normally as per real driving conditions.
- Test fuel was always drawn from single commercial batch.
- No extra electrical load was placed on the vehicle's battery while testing.
- Driver for all the tests was kept same except for XUV IND RDE.

## Test Setup:

The following equipments were required to measure required data:

- PEMS (Portable Emission Measurement System)
- OBD data
- Ambient temperature and humidity sensor.
- GPS (Global Positioning System)
- Physical tapping to measure EGR signal or behavior
- Fuel flow meter

#### PEMS mounting and Set up:

The PEMS used for this project was an integrated system from AVL with advanced gas analyzes, exhaust mass flow meters, OBD data logging, weather station, and Global Positioning System (GPS).

PEMS is equipment that can be used to collect accurate real time pollutants emitted during RDE by the engine (CO, CO<sub>2</sub>, NOx), and also log other associated data of engine, vehicle and ambient parameters. PEMS require 30 min. warm up time before starting the test procedure. As per EU procedure, after warm-up is completed pre-calibration check has to be done on PEMS before starting PEMS test. After the RDE test is completed, post-calibration check is done. Then, recorded data is post processed for time alignment, drift correction, wet-dry conditions, NOx correction for temperature and humidity. Same PEMS setup was mounted on all the three vehicles one by one.

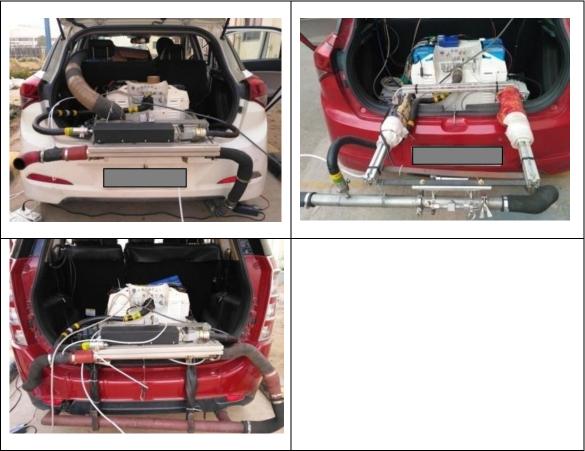



Figure 35: PEMS setup on vehicles

PEMS equipment specifications are given in Table 16 of Annexure I.

Gases used to calibrate PEMS analyzers for all the three vehicles for both EU & IND RDE tests are given in **Table 17** of **Annexure I.** 

## EGR Signal Tapping:

EGR signal tapping during RDE was done in same manner as described in Section 5.1.2 Task 1 - Test Setup and Methodology of this report.

## Fuel Flow meter:

Specification of Fuel Flow meter used for I20\_P RDE testing is shown in **Table 18** of **Annexure I**. Installation mounting pictures are given below: -

0004 С D 0 R Μ



Figure 36: Fuel Flow Meter setup in I20\_P

Specification of Fuel Flow meter used for I20\_D and XUV500 RDE testing is given as shown in of **Table 19** of **Annexure I**. Installation mounting pictures are given below: -



Figure 37: Fuel Flow Meter setup in I20\_D & XUV 500 respectively

## 5.2.3 Task 2- Results:

## CVS v/s PEMS correlation:

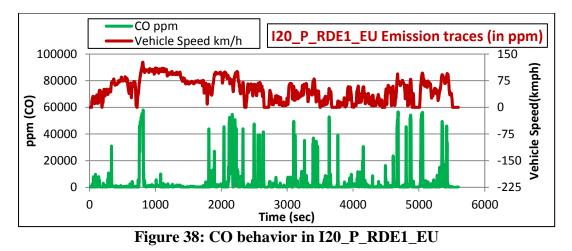
Before starting RDE tests, it was required to check correlation between emissions results of Mass Bag Emission's CVS (Constant Volume Sampler) and PEMS. For this purpose, PEMS was mounted on the vehicle and driven for WLTC Cold Test on Chassis Dynamometer. The tail pipe's exhaust gases were first passed from PEMS Analyzers and then sent to CVS for Mass Emission Analyzers.

Finally, the total cycle emission results were calculated and compared for both CVS and PEMS. As agreed with ICCT, correlation of CVS and PEMS was done only in diesel vehicles viz. I20\_D and XUV500. The correlation passed as per "Section 3.3 - Permissible tolerances for PEMS validation" of Appendix 3 of EU legislation 2016/427 (first RDE regulatory package). Detailed results of correlation tests are given below: -

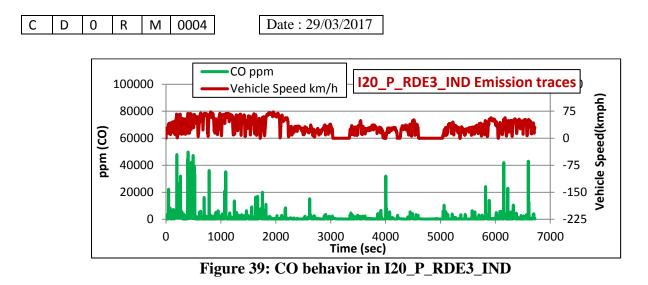
| С | D | 0 | R | М | 0004 |
|---|---|---|---|---|------|

|                                | СО            | CO2         | NOx          |  |  |  |  |
|--------------------------------|---------------|-------------|--------------|--|--|--|--|
|                                | g/Km          | g/Km        | g/Km         |  |  |  |  |
| CVS Bag Results                | 0.042         | 129.58      | 0.304        |  |  |  |  |
| PEMS Total Results             | 0.0468        | 136.83      | 0.3379       |  |  |  |  |
| Absolute Difference w.r.t. CVS | 4.8           | 7.25        | 33.9         |  |  |  |  |
| % Difference w.r.t CVS         | 11.4%         | 5.6%        | 11.2%        |  |  |  |  |
| Permissible Tolerance (max of) | +/- 150 mg/Km | +/- 10 g/Km | +/- 15 mg/Km |  |  |  |  |
|                                | or 15%        | or 10%      | or 15%       |  |  |  |  |
|                                | PASS          | PASS        | PASS         |  |  |  |  |

## Table 12: I20\_D CVS v/s PEMS Correlation


## Table 13: XUV 500 CVS v/s PEMS Correlation

|                                | СО            | CO2         | NOx          |
|--------------------------------|---------------|-------------|--------------|
|                                | g/Km          | g/Km        | g/Km         |
| CVS Bag Results                | 0.21          | 195.261     | 0.695        |
| PEMS Total Results             | 0.252         | 207.895     | 0.7973       |
| Absolute Difference w.r.t. CVS | 42            | 12.63       | 102.3        |
| % Difference w.r.t CVS         | 20.0%         | 6.5%        | 14.7%        |
| Permissible Tolerance (max of) | +/- 150 mg/Km | +/- 10 g/Km | +/- 15 mg/Km |
|                                | or 15%        | or 10%      | or 15%       |
|                                | PASS          | PASS        | PASS         |


Emission Results - Modal Traces:

### I20 Petrol:

Second by second modal data was logged successfully for I20\_P vehicle. Since for gasoline vehicles; CO emissions are more prominent so the detailed analysis for the same is shown in the figure below. The data shows that CO trace is relatively higher in EU RDE as compared to IND RDE for I20\_Petrol.



Pg 33 of 48



## I20 Diesel:

Second by second modal data was logged successfully for I20\_D vehicle. Since for diesel vehicles; NOx emissions are more prominent so the detailed analysis for the same is shown in the figure below. The data shows that NOx trace is relatively higher in EU RDE as compared to IND RDE for I20\_Deisel.

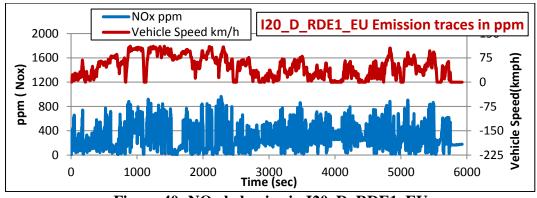



Figure 40: NOx behavior in I20\_D\_RDE1\_EU

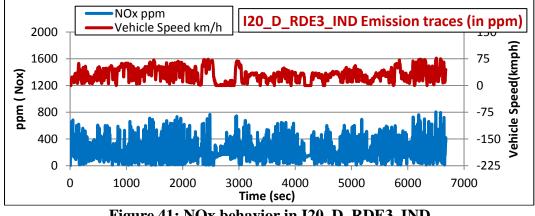



Figure 41: NOx behavior in I20\_D\_RDE3\_IND

| r |   |   |   |   |      |
|---|---|---|---|---|------|
| С | D | 0 | R | Μ | 0004 |

## <u>XUV500:</u>

Second by second modal data was logged successfully for XUV500 vehicle. Detailed analysis for CO & NOx emissions is shown in the figure below. The data shows that NOx trace is relatively lower in EU RDE as compared to IND RDE for XUV500. However, CO trace has increased in EU RDE.

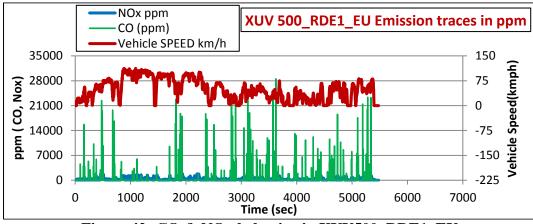



Figure 42: CO & NOx behavior in XUV500\_RDE1\_EU

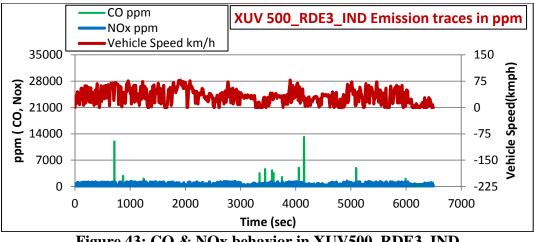



Figure 43: CO & NOx behavior in XUV500\_RDE3\_IND

Post processing of all vehicles using EMROAD:

All the EU regulatory RDE tests got passed as per procedures EU 2016/427 and EU 2016/646

| Table 14. Status of EO KDE tests dolle |            |            |       |       |      |      |  |
|----------------------------------------|------------|------------|-------|-------|------|------|--|
|                                        | I20_P      | I20_P      | I20_D | I20_D | XUV  | XUV  |  |
|                                        | RDE1       | RDE2       | RDE1  | RDE2  | RDE  | RDE  |  |
|                                        | _EU        | _EU        | _EU   | _EU   | 1_EU | 2_EU |  |
| Tr                                     | ip Shares  |            |       |       |      |      |  |
| Urban 34%+10% &>=29%                   | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |
| Rural 33% +-10%                        | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |
| Motorway 33% +-10%                     | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |
| Trip Distance                          | e, Time an | d Altitude | :     |       |      |      |  |
| Urban – Minimum 16 km                  | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |
| Rural – Minimum 16 km                  | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |
| Motorway – Minimum 16 km               | Pass       | Pass       | Pass  | Pass  | Pass | Pass |  |

### Table 14: Status of EU RDE tests done

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|
| - | - | - |   |   |      |

|                                                         | I20_P<br>RDE1<br>_EU  | I20_P<br>RDE2<br>_EU | I20_D<br>RDE1<br>_EU | I20_D<br>RDE2<br>_EU | XUV<br>RDE<br>1_EU | XUV<br>RDE<br>2_EU |  |  |  |
|---------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|--------------------|--------------------|--|--|--|
| Total Trip Time Duration 90 -120 min                    | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Delta - Start to End Altitude (max 100 m)               | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Urba                                                    | n Requirem            | ents                 |                      |                      |                    |                    |  |  |  |
| Avg Velocity 15-40 km/h                                 | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Urban Stop time 6 -30%                                  | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Motorway Requirements                                   |                       |                      |                      |                      |                    |                    |  |  |  |
| 5 Minutes $\geq$ 100 km/h Pass Pass Pass Pass Pass Pass |                       |                      |                      |                      |                    |                    |  |  |  |
| Velocity b/w 90-110 km/h                                | Pass                  | Pass                 | Pass                 | Fail                 | Pass               | Pass               |  |  |  |
| Test Completeness (CO2 Windows)                         |                       |                      |                      |                      |                    |                    |  |  |  |
| Urban 15% Windows                                       | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Rural 15% Windows                                       | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Motorway 15% Windows                                    | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| CO2 Norma                                               | lity(Normal           | Windows              | 5)                   | _                    | _                  |                    |  |  |  |
| Urban 50% in Primary Tolerance                          | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Rural 50% in Primary Tolerance                          | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Motorway 50% in Primary Tolerance                       | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Acce                                                    | leration poi          |                      |                      |                      |                    |                    |  |  |  |
| $(a > 0.1 \text{ m/s}^2) >= 150$                        | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| Trip Validity                                           |                       | 1                    | f)                   | 1                    | 1                  | 1                  |  |  |  |
| v<=74.6km/h & va pos[95]>va_pos thrshld1                | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| v>74.6 km/h & va pos[95]>va_pos thrshld2                | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
|                                                         | dity RPA (in          |                      |                      |                      |                    |                    |  |  |  |
| v <= 94.05 and RPA < RPA threshold                      | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| v > 94.05 and RPA < 0.025                               | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                   | > 0.9 * 99th <u>p</u> |                      | r                    | T                    | 1                  | r                  |  |  |  |
| NO [ppm]                                                | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| NO2 [ppm]                                               | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| CO [ppm]                                                | Pass                  | Pass                 | Pass                 | Pass                 | Fail               | Pass               |  |  |  |
| CO2 [%]                                                 | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |
| % Mean Values >= 2 * Span Gas; <= 0.01                  | Pass                  | Pass                 | Pass                 | Pass                 | Pass               | Pass               |  |  |  |

Deviations:

1) In I20\_D RDE2\_EU, max vehicle speed could not be taken beyond 107kmph due to traffic.

2) In XUV RDE1\_EU, Span gas used was of little low range. In RDE2\_EU, higher CO span gas was used.

For India Specific RDE tests, vehicles were driven as per real Indian Driving Conditions and as such no regulation was followed.

#### Emission Results - Total Bag:

Total Emission Results w.r.t BSIV emission results are given below for all 3 vehicles. The charts also show compilation of Fuel Economy measured from PEMS and the Flow Meter in kmpl.

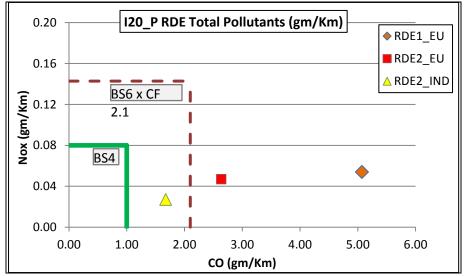
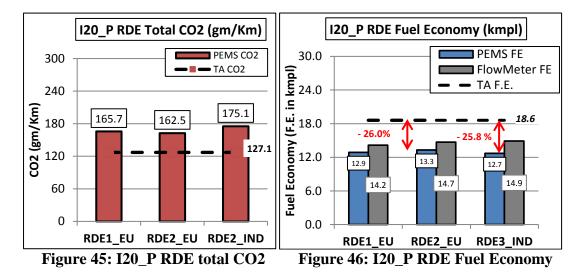




Figure 44: I20\_P RDE total pollutants



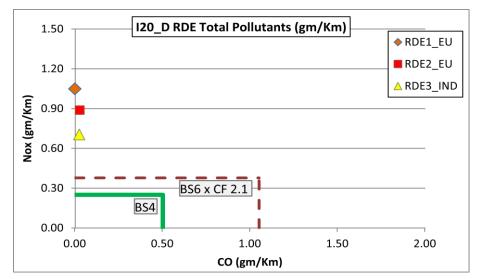
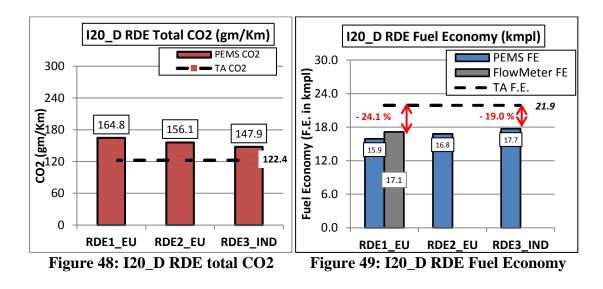




Figure 47: I20\_D RDE total pollutants



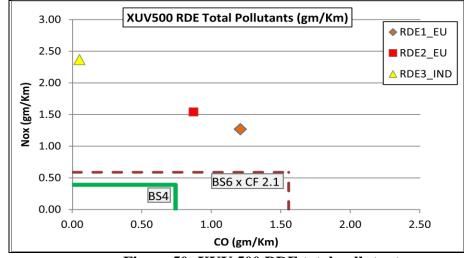
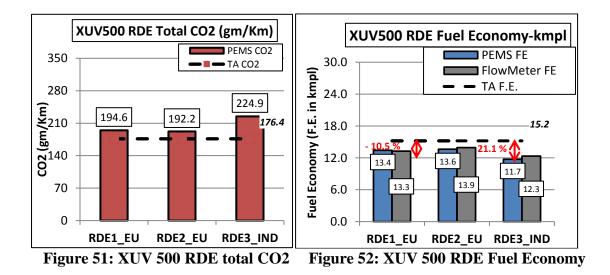




Figure 50: XUV 500 RDE total pollutants



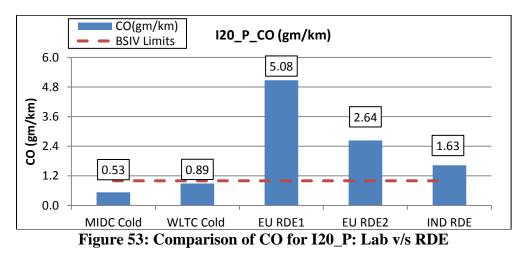
## 5.2.4 Task2 - Conclusions:

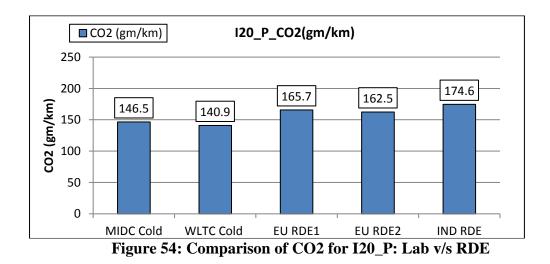
| Table 15: Factor of RDE over Lab Limits |                     |            |                       |      |  |
|-----------------------------------------|---------------------|------------|-----------------------|------|--|
|                                         | Factor of           | RDE w.r.t. | Factor of RDE w.r.t.  |      |  |
|                                         | <b>BS IV limits</b> |            | proposed BS VI limits |      |  |
|                                         | СО                  | NOx        | CO                    | NOx  |  |
| I20 Petrol                              | 3.85                | 0.63       | 3.85                  | 0.74 |  |
| I20 Diesel                              | 0.05                | 3.88       | 0.05                  | 5.39 |  |
| XUV 500                                 | 1.40                | 6.07       | 1.40                  | 8.46 |  |

• Overall, RDE testing completed successfully on all 3 vehicles.

- From the above table it can be concluded that RDE emissions of all the three vehicles are almost 4 to 6 times of BSIV Lab emission limits and up to 9 times of proposed BSVI Lab emission limits.
- Emissions are comparatively higher in EU RDE testing as compared to IND RDE testing for I20\_P and I\_20 D. However in case of XUV500, EU RDE has higher CO but lower NOx as compared to IND RDE.
- Fuel Economy (F.E.) has come 20 to 25 % lower in IND RDE tests for all 3 vehicles as compared to what was declared by manufacturer during Type Approval for all 3 vehicles.

## **Challenges faced:**


- Initially XUV500 presented an EGR system malfunction, which was detected after failing the first MIDC tests and subsequently resolved. For details on pre- and post-repair emission performance refer Annexure-II
- Mounting of PEMS with all required adaptations without tempering vehicles was challenging since the vehicles have to be re-sold in market after completion of project. Also in India, trailer hitch option is not available. So, special arrangement was made to mount PEMS inside the vehicle behind the last row passenger seat and PEMS was fixed on the floor.
- Some tests were failed under European RDE requirements for speed and RPA due to heavy traffic on road and had to be repeated.


| C D | 0 | R | Μ | 0004 | 1 |
|-----|---|---|---|------|---|
|-----|---|---|---|------|---|

### **5.3** Comparison of laboratory and on-road emissions measurements:

Pollutants Comparisons:

120 Petrol: Comparison of pollutants of i20 Petrol during CVS and RDE testing is presented here.





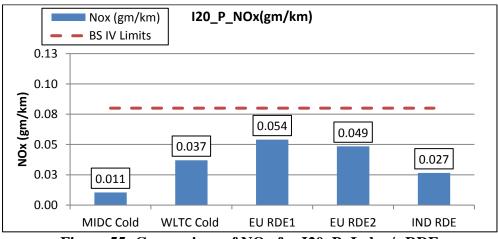



Figure 55: Comparison of NOx for I20\_P: Lab v/s RDE

I20 Diesel: Comparison of pollutants of i20 Diesel during CVS and RDE testing is presented here.

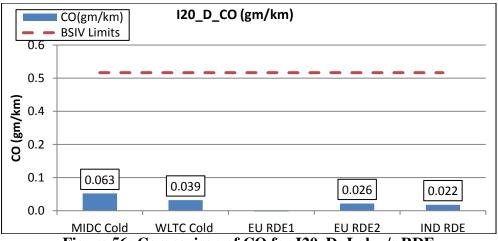



Figure 56: Comparison of CO for I20\_D: Lab v/s RDE

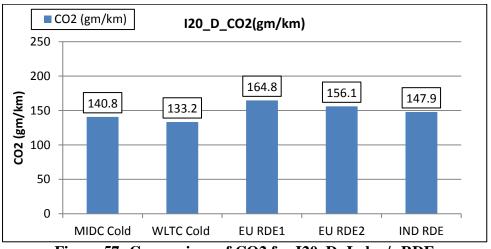
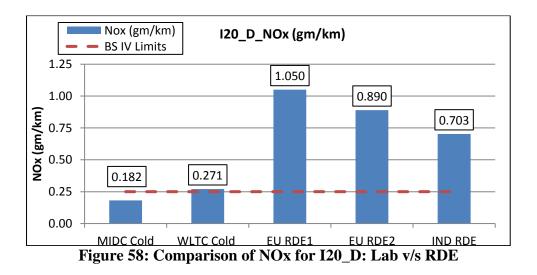
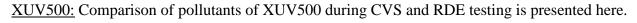





Figure 57: Comparison of CO2 for I20\_D: Lab v/s RDE



| C D 0 R M 00 | 004 |
|--------------|-----|
|--------------|-----|



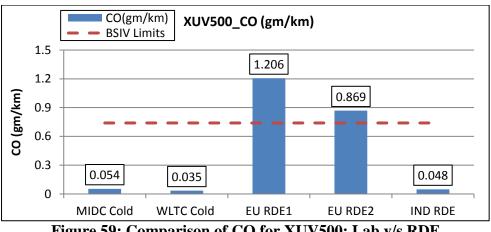



Figure 59: Comparison of CO for XUV500: Lab v/s RDE

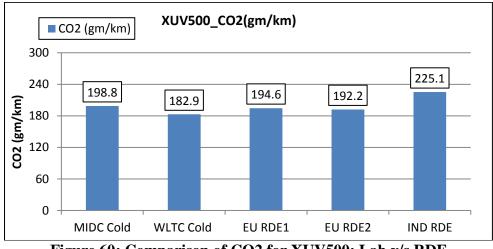



Figure 60: Comparison of CO2 for XUV500: Lab v/s RDE

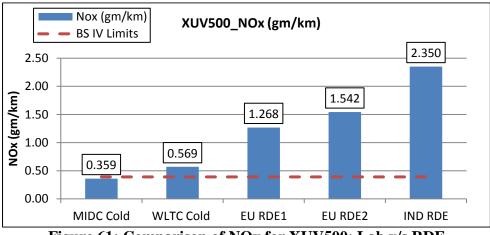



Figure 61: Comparison of NOx for XUV500: Lab v/s RDE

| C D 0 | R | Μ | 0004 | 1 |
|-------|---|---|------|---|
|-------|---|---|------|---|

### Annexure I

This Annexure contains specifications of equipments & calibration gases used during RDE testing:

|                                 | Table 16: PEMS specifications                                                                                                                                                                                            |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operating temperature (ambient) | -10°C to 45°C -30°C to -10°C with additional insulating blanket                                                                                                                                                          |  |  |
| Storage temperature             | -30 to +70°C(Oxygen sensor needs to be removed below 0°C and above 50°C)                                                                                                                                                 |  |  |
| Dimensions (w*h*d)              | Measuring module: ~ 495*355*333 mm, with protection cover: ~ 590*480*447mm                                                                                                                                               |  |  |
| Weight                          | < 30kg (NOx Module)                                                                                                                                                                                                      |  |  |
| Warm-up time @20°C ambient temp | < 1hr (ready for measurement)                                                                                                                                                                                            |  |  |
| Power demand                    | 22 to 28V DC, appr. 220W @ 20°C ambient temperature (with 2m sample line and after warm up)                                                                                                                              |  |  |
| Sample flow rate                | < 3.5I/min                                                                                                                                                                                                               |  |  |
| Sampling Conditions             | End of tail pipe, ±50mbar relative pressure                                                                                                                                                                              |  |  |
| Inputs/Outputs electrical       | 1xHeated line connectors; 1x Ethernet (TCP/IP)                                                                                                                                                                           |  |  |
| Analyzer Technologies           | UV (NO/ NO2); NDIR (CO/CO2) ; Electrochemical: (O2)                                                                                                                                                                      |  |  |
| Measurement Range               | 0 -5,000 ppm (NO); 0 -2,500 ppm (NO2) ; 0 -5 vol% (CO), 0 -20 vol% (CO2)                                                                                                                                                 |  |  |
| Accuracy                        | CO:0 –1,499 ppm: +-30 ppm abs., 1,500 ppm –49,999 ppm: +-2% rel.;<br>CO2:0 –9.99 vol.%: +-0.1 vol.% abs., 10 -20 vol.%: +-2% rel.<br>NO: 0–5,000 ppm: +-0.2% FS or +-2% rel.<br>NO2:0 –2,500 ppm: +-0.2% FS or +-2% rel. |  |  |
| Zero Drift                      | CO:20 ppm/8h<br>CO2:0.1 vol%/8h<br>NO/ NO2:2 ppm/8h                                                                                                                                                                      |  |  |
| Span Drift                      | CO:≤ 20 ppm abs./8h or 2% rel./8h<br>CO2:≤ 0.1 vol% abs./8h or 2% rel./ 8h<br>NO/ NO2:≤ 1% rel./ week                                                                                                                    |  |  |
| Linearity                       | slope : 0,99 ≤ Slope ≤1,01, intercept ≤0,5 %,<br>SEE: ≤1% of range and R2: >= 0,999                                                                                                                                      |  |  |
| Pneumatics Inputs/ Outputs      | 1x external calibration module<br>1x exhaust and drainage OUT                                                                                                                                                            |  |  |
| Heated Lines                    | Available lengths:<br>·1.2m Y-Type<br>· 1.2 m Single<br>· 2.5 m Single<br>· 5.0 m Single<br>T Adjustable: 70 –120°C                                                                                                      |  |  |

#### **Table 16: PEMS specifications**

# Table 17: List of calibration gases used for calibrating PEMS

| Port/Bottle     | Gases    | I20_P     | I20_D | X     | UV 500    |
|-----------------|----------|-----------|-------|-------|-----------|
| Port 1/Bottle 1 | NO2(ppm) | 505       | 505   | 2356  |           |
|                 |          | 49200 497 | 10.00 | RDE 1 | RDE 2&IND |
| Port 2/Bottle 2 | CO(ppm)  |           | 4978  | 4978  | 49200     |
| Port 1/Bottle 3 | NO(ppm)  | 4940      | 4940  |       | 4940      |
| Port 2/Bottle 4 | CO2(%)   | 19.9      | 19.9  |       | 19.9      |

| С | D | 0 | R | М | 0004 |
|---|---|---|---|---|------|
| - |   | - |   |   |      |

# Table 18: Specifications of Fuel flow meter used in I20\_P

| Flow meter                                                                    | servo-driven displacement counter according to the PLU measuring principle                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measurement range<br>(type 075)                                               | 0.1675 l/hr<br>0.12 56 kg/h * (*at a density of 0.75 g/cm <sup>3</sup> )                                                                                                                                                                                             |
| Density meter (option):                                                       | 500 2000 kg/m <sup>3</sup>                                                                                                                                                                                                                                           |
| Density measurement uncertainty                                               | 1 kg/m <sup>3</sup>                                                                                                                                                                                                                                                  |
| Measurement uncertainty<br>(reproducibility of sensor calibration<br>factors) | ±0.1% (of reading)                                                                                                                                                                                                                                                   |
| Rise time                                                                     | t10 t90 < 125 ms                                                                                                                                                                                                                                                     |
| Ambient temperature                                                           | -10 °C +50 °C                                                                                                                                                                                                                                                        |
| Media temperature                                                             | -10 °C +60 °C (+80 °C in case of minimum 1/3 tankful)                                                                                                                                                                                                                |
| Measuring media (measuring module):                                           | FlexFuel:<br>Gasoline, standard grade, super grade fuels (leaded/unleaded) with<br>any alcoholic admixtures as well as equivalent testing fluids<br>Methanol, ethanol etc. up to 100 % as well as equivalent testing fluids<br>Diesel and equivalent testing fluids, |
|                                                                               | Biodiesel (device has to be purged after use; follow operating instructions)                                                                                                                                                                                         |
| Signal Output                                                                 | RS 232 with AK-protocol Frequency out (approx. 0 80 kHz) TTL<br>Open collector RS 422                                                                                                                                                                                |
| Operating voltage:                                                            | 12 VDC, option: 24 VDC                                                                                                                                                                                                                                               |
| Dimensions (measuring module):                                                | 470 x 170 x 550 mm (W x H x D)                                                                                                                                                                                                                                       |
| Weight (measuring module):                                                    | 15 kg                                                                                                                                                                                                                                                                |

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|

# Table 19: Specifications of Fuel flow meter used in I20\_D and XUV 500

| Measurement Parameters                   | Fuel Volume, Fuel Temperature (Option), Fuel Pressure<br>(Option)                                                                                 |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| To be used with                          | gasoline , diesel, alcohol based and bio fuel                                                                                                     |
| Quick lock Connectors                    | NW 5.8                                                                                                                                            |
| Measuring ranges                         | Flow Rate 0.52501/h                                                                                                                               |
| Fuel Temperature                         | -20+75 °C (option)                                                                                                                                |
| Fuel Pressure                            | 06bar relative (option)                                                                                                                           |
| Measuring Accuracy                       | Fuel Volume $\pm 0.5\%$ of reading (in the range 150l/h)                                                                                          |
| Fuel Temperature                         | K-Type DIN IEC 584. Class 1 (others on request)<br>(option) PT 100                                                                                |
| Fuel Pressure                            | ± 0.25% or ± 0.15% full scale (option)                                                                                                            |
| resolution                               | Fuel Volume 330x10-3 ml                                                                                                                           |
| Fuel Temperature                         | depending on the user's data acquisition                                                                                                          |
| Fuel Pressure                            | depending on the user's data acquisition                                                                                                          |
| Drop of Pressure                         | 30kPa at 50l/h , 80 kPa at 120 l/h usually compensated by internal pump                                                                           |
| Operation Pressure                       | sub pressure approx0.5 bar up to 5 bar in error condition max. 6 bar                                                                              |
| Shock and vibration resistance           | 3G                                                                                                                                                |
| Media Temperature                        | short term 120 °C at approx. 70°C and above, gas<br>bubbles can develop in the fuel. Presence of gas bubbles<br>can result in diminished accuracy |
| Ambient Temperature range (Operation)    | -20+70°C                                                                                                                                          |
| Fuel Filter                              | one filter on each side                                                                                                                           |
| relative humidity                        | 80%                                                                                                                                               |
| Operating voltage                        | provided by signal processor                                                                                                                      |
| Degree of ingress protection             | IP 44                                                                                                                                             |
| Favourite mounting / operating direction | not defined                                                                                                                                       |
| Dimension                                | 183 × 106 × 94 mm                                                                                                                                 |
| Weight                                   | 2.0 kg                                                                                                                                            |

| С | D | 0 | R | Μ | 0004 |
|---|---|---|---|---|------|
| - | - | - |   |   |      |

### Annexure-II

### XUV 500 EGR Issue

XUV500 vehicle initially had problem with EGR valve not getting open significantly. The EGR malfunction was detected first during MIDC testing after failing the emission test. OBD scan tool also didn't show any fault code. Emissions were comparatively higher than BS IV legislative limits (as per MIDC cold start emission values).

The vehicle was diagnosed by service center and it was found out that vacuum hose of EGR line was punctured of EGR. The issue was resolved by replacing the hose and EGR started behaving normally.

Following is emission comparison of XUV500 before and after repair of EGR:

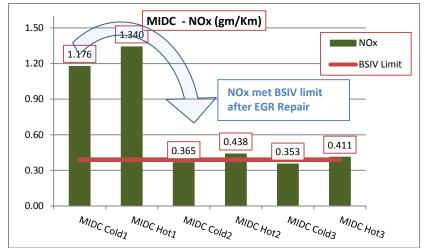



Figure 62: Comparison of NOx before and after repair of EGR

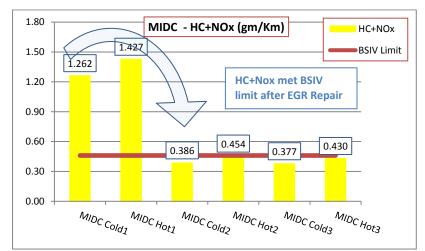
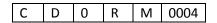




Figure 63: Comparison of HC+NOx before and after repair of EGR



### 6. References:

- $1. \ https://www.dieselnet.com/standards/cycles/wltp.php$
- 2. http://www.transportpolicy.net
- 3. Internal Combustion Engine Fundamentals. by John B. Heywood
- 4. https://www.unece.org/trans/main/wp29/meeting\_docs\_grpe.html

C D 0 R M 0004

Date: 29/03/2017



nnovation • Service

### ----- DT - report-----

### **Disclaimer:**

- ICAT issues "Development Test Reports" (DTR) for vehicles/ engines/Genset/ parts/ assemblies etc. based on the documents produced and/or prototype / vehicle(s) submitted by the applicant and testing thereof.
- . ICAT issues DTR in compliance to Motor Vehicle Act/ Central Motor Vehicle Rules/ Central Pollution Control Board rules and their provisions as amended from time to time or any other statutory orders under which ICAT is authorized. Other Rules/Acts are outside the purview/scope of the DTR.
- 3. Test(s) on prototype is/are carried out on the basis of standard procedures as notified under specific rules. Results of such tests are property of bearer of DTR. These results cannot be disclosed unless specifically ordered by Government, Court, etc.
- 4. The bearer of the DTR is under the obligation to ensure production strictly as per the provisions of the specific DTR.
- 5. ICAT is not responsible for testing each vehicle/ engines/Genset/ component/part/assemblies etc. for which DTR is issued. Further, ICAT is not responsible for ensuring manufacturing quality of the development of vehicles/ engines/Genset/ components/ parts/ assembles etc.
- 6. ICAT is no way responsible for any misuse or copying of any design/type/system in connection with entire vehicle/ engines/Genset/ components/parts and assemblies covered under the DTR.
- 7. Breach of any statutory provision of Indian laws or laws of other countries, will be sole responsibility of the bearer of the DTR and ICAT shall not be liable for any claims or damages. The bearer shall alone be liable for the same, and shall undertake to indemnify ICAT in this regard.
- 8. ICAT has the right, but not under obligation to initiate cancellation / withdrawal of the certificate issued, in case of any fraud, misrepresentation, when it surfaces and comes in the knowledge of ICAT.
  Innovation Service Excellence

The appropriate local court at Gurgaon shall have the jurisdiction in respect of any dispute, claim or liability arising out of this report.

| Prepared By         |                                 | Checked By                       |                     |
|---------------------|---------------------------------|----------------------------------|---------------------|
| Brij Mohan          | THE FOR AUTOMOTIVE FECHNOLOGIES | Gaveran Gupta                    |                     |
| BRIJ MOHAN<br>(GET) |                                 | GAURAV GUPTA<br>(Manager PT-CoE) | Page<br>48 of<br>48 |