CO_{2} emissions from new passenger cars in the EU: Car manufacturers' performance in 2016

The purpose of this briefing paper is to provide a summary of CO_{2} emission levels of new passenger cars in the European Union (EU) in 2016. The briefing is based on a preliminary dataset recently released by the European Environment Agency (EEA) on monitoring CO_{2} emissions from new passenger cars in the EU. New cars sold in the EU in 2016 had average CO_{2} emissions of $118 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$, which was 1.2% lower than in 2015.

As a follow-up to the previous year's briefing, ${ }^{1}$ this paper details manufacturers' performance in terms of CO_{2} emissions reduction, fuel and technology trends, and market share. The paper focuses on differences between Member States, as well as between the major manufacturer groups. It also discusses the impact of the supercredit provision on the average CO_{2} emission values of manufacturer groups.

1. BACKGROUND

The EEA recently released a preliminary dataset on the CO_{2} emissions performance of new passenger cars in the EU in 2016. ${ }^{2}$ This dataset is at the core of the monitoring scheme of CO_{2} emissions from passenger cars, and is used by the European Commission to evaluate whether car manufacturers comply with their mandatory CO_{2} targets as defined in the

[^0][^1]Regulation EC 443/2009. The EEA collects the data from the Member States, which are required to submit detailed information on each new car registered on a yearly basis.

The EEA data show that the sales-weighted average CO_{2} emissions from new passenger cars in the EU in 2016 were $118 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}, 1.2 \%$ lower than in 2015. As illustrated in Figure 1, average CO_{2} emissions from new cars decreased by more than 27% from 2005 to 2016. From 2008, when CO_{2} targets were first agreed upon, CO_{2} emissions fell at an average rate of 3.2% per year, and vehicle manufacturers reached the average 2015 target of $130 \mathrm{~g} / \mathrm{km}$ in time. If average CO_{2} emissions from new cars continue to decrease at a similar pace, car manufacturers would meet the $2020 / 21$ target of $95 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$, which includes a one-year phase-in. The reduction rate is much higher than in a business-as-usual scenario without mandatory standards: Before mandatory standards were agreed upon in 2008, the annual rate of improvement was only about 1.2%.

The reduction of CO_{2} emissions implies a reduction in fuel consumption, as they are effectively proportional. Since 2005, fuel consumption has decreased from $6.91 / 100 \mathrm{~km}$ to $5.1 \mathrm{I} / 100 \mathrm{~km}$ (gasoline equivalent) in $2016 .^{3}$

Figure 1. Historical development, trends, and targets for CO_{2} emission levels of new passenger cars in the EU. Effects of phase-in, super-credits, and eco-innovations are not considered here.

2. CO_{2} EMISSIONS BY VEHICLE MANUFACTURER

Car manufacturers can pool together the average emissions of several brands to meet CO_{2} standards (only the average CO_{2} emissions of a pool as a whole are regulated). For the purpose of this analysis, we follow a definition of manufacturer groups that is

[^2]intended to mirror the actual vehicle market as closely as possible and may be different from manufacturer pools in the context of the EU regulations. ${ }^{4}$

Figure 2 illustrates the distance of each manufacturer group to its 2015 and 2020/21 emission targets. The 2015 and 2020/21 targets for each manufacturer group are set according to the average mass of their new fleet, based on the limit value curves displayed in the figure. The exact 2020/21 target line equation has not been officially set yet, as it will be adjusted based on the average mass of new passenger cars in the three calendar years leading up to the target year. For the current analysis, the 2020/21 target equation was defined using the 2016 average vehicle mass. For each manufacturer group, the 2020/21 target implies a decrease of approximately 27% in average CO_{2} emissions compared to the 2015 target.

Figure 2. Performance of the top-selling EU passenger car manufacturer groups for 2016, along with the 2015 and 2020 (effectively 2021) target lines. For PSA and Renault-Nissan the changes in their respective fleet averages resulting from the recently announced mergers with Opel/Mitsubishi are indicated with arrows.

Table 1 presents average CO_{2} emission values for the eight major manufacturer groups (representing 86\% of the 2016 EU new car registrations), both with and without considering the effect of super-credits. Super-credits are favorable weightings for cars emitting less than $50 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$. The impact of super-credits is discussed in detail in Section 4. It should be noted that to illustrate the effect of super-credits, the 2021 multiplier 1.67 has been applied in the table. The 2020/21 target for each manufacturer was calculated using the respective average mass in 2016.

[^3]Table 1. Manufacturer group market shares, average vehicle mass, CO_{2} emissions with and without super-credits for 2016, and CO_{2} emission targets for 2020 (effectively 2021).

	EU marketshare	Average mass (kg)	$\mathrm{CO}_{2}(\mathrm{~g} / \mathrm{km})$		
			2016 w/o super-credits	2016 w/ supercredits for 2021	$\begin{gathered} \text { 2020/21 } \\ \text { target } \end{gathered}$
Toyota	4\%	1,340	105	105	93
PSA	17\%	1,281	110	110	91
Renault-Nissan	15\%	1,304	111	110	92
Average		1,388	118	118	95
FCA	6\%	1,247	120	120	90
Ford	7\%	1,369	120	120	94
Volkswagen	24\%	1,419	120	120	96
BMW	7\%	1,572	123	121	101
Daimler	6\%	1,584	125	125	102

Overall, the CO_{2} reduction progress from 2015 to 2016 was slow for most manufacturers. The market share of PSA increased from 11% in 2015 to 17% in 2016, thanks to the recent acquisition of Opel. At the same time, average fleet CO_{2} emissions of PSA including Opel increased by $5 \mathrm{~g} / \mathrm{km}$ to a level of $110 \mathrm{~g} / \mathrm{km}$. The 2020/21 target for PSA remained stable at $91 \mathrm{~g} / \mathrm{km}$ despite efficiency improvements by the two major PSA brands Peugeot and Citroën, indicating that the Opel brand is still further away from its 2020/21 CO 2 target level than the rest of the new PSA group (see Figure 1). Toyota remains the manufacturer group closest to its 2020/21 target, with a current emissions level of $105 \mathrm{~g} / \mathrm{km} \mathrm{CO}_{2}$ and a target of $93 \mathrm{~g} / \mathrm{km}$. An effect of super-credits at the manufacturer group level is only notable for Renault-Nissan and BMW, respectively benefiting from a $1 \mathrm{~g} / \mathrm{km}$ and $2 \mathrm{~g} / \mathrm{km}$ reduction of average CO_{2} values as a result of the super-credits provision.

3. FUEL/TECHNOLOGY TRENDS BY MEMBER STATE AND MANUFACTURER

Passenger cars powered by alternative fuels made up a small share of the new EU car fleet in 2016. The share of electric vehicles, namely hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs), increased from 2.5% in 2015 to 3.2%. Conventional diesel and petrol cars accounted for 95% of new cars. With a market share of 49%, diesel cars continued to account for most new registrations, but lost three percentage points compared to 2015. ${ }^{5}$

Table 2 presents the market share of various fuels and technologies in 2016 by country. ${ }^{6}$ Alternative fuel types such as hydrogen, compressed natural gas (CNG), ethanolgasoline mix, and liquefied petroleum gas (LPG) have been grouped as "Other."

[^4]Table 2. Market share of fuels/technologies for new passenger cars in 2016, by country.

	Diesel	Petrol	Hybrid- electric	Plug-in hybrid electric	Battery- electric	Other	Market share
EU Total	49%	46%	1.9%	0.7%	0.6%	1.1%	-
Germany	46%	52%	1.0%	0.4%	0.4%	0.2%	22.9%
UK	48%	49%	1.9%	1.0%	0.5%	0.0%	18.4%
France	52%	44%	2.4%	0.3%	1.1%	0.1%	13.5%
Italy	57%	33%	2.0%	0.1%	0.1%	7.8%	12.6%
Others (EU)	40%	58%	1.6%	0.1%	0.1%	0.9%	8.0%
Spain	57%	40%	2.7%	0.1%	0.2%	0.0%	7.8%
Belgium	52%	44%	1.7%	1.3%	0.4%	0.4%	3.7%
Netherlands	19%	72%	2.9%	4.8%	1.1%	0.4%	2.6%
Sweden	53%	39%	3.6%	2.7%	0.9%	1.2%	2.5%
Austria	57%	40%	1.0%	0.4%	1.2%	0.2%	2.3%
Denmark	36%	61%	2.6%	0.2%	0.6%	0.1%	1.5%
Portugal	65%	32%	1.5%	0.5%	0.4%	0.5%	1.4%
Ireland	70%	28%	1.8%	0.2%	0.3%	0.3%	1.0%
Finland	33%	62%	3.4%	1.6%	0.2%	0.2%	0.8%
Greece	54%	43%	1.9%	0.1%	0.1%	0.3%	0.5%
Luxembourg	65%	33%	1.1%	0.3%	0.4%	0.0%	0.3%
Iceland	44%	45%	3.8%	3.2%	1.3%	1.9%	-
Norway	31%	29%	11.3%	13.4%	15.7%	0.0%	-
Switzerland	39%	56%	2.4%	0.8%	1.1%	0.3%	-
Turkey	61%	38%	0.1%	0.0%	0.0%	0.0%	-

Norway remains at the forefront of the European electric vehicle market, with 15.7% of new car registrations in 2016 being BEVs and another 13.4\% being PHEVs. In addition, 11.3% of vehicles are HEVs. For PHEVs, the Netherlands, Iceland, and Sweden7 show relatively high market shares ($4.8 \%, 3.2 \%$, and 2.7%). However, the PHEV market share in the Netherlands dropped from 8.8% in 2015 to 4.8% in 2016. In Finland, on the other hand, the market share of PHEV increased from 0.4% to 1.6% within the last year.

Table 3 presents the market share of fuels/technologies in 2016 for major car manufacturer groups and brands, sorted by descending market shares of manufacturer groups.

The Toyota group clearly stands out with the highest share of HEVs (40.8\% of sales), followed by the Kia brand as a distant second with 1.9%. As in 2015, Renault-Nissan and BMW led the BEV market. BEVs accounted for 1.6% and 1.1% of their 2016 sales, respectively. As for the PHEV market, BMW and Daimler are leading the market with shares of 2.0% and 1.4%, respectively. However, at the brand level we observe much higher market shares, with PHEVs accounting for more than 14.8% of Mitsubishi's total

[^5]sales. Porsche and Volvo also sold a considerable share of PHEVs (4.8\% and 4.5\% respectively). The Italian automaker Fiat led the market for natural gas vehicles, which made up 6.3\% of total sales.

Table 3. Market share of fuel/technologies for new passenger cars in 2015 for selected brands and manufacturers.

	Diesel	Petrol	Hybridelectric	Plug-in hybrid electric	Batteryelectric	Other	EU Market share
EU Total	49\%	46\%	1.9\%	0.7\%	0.6\%	1.1\%	-
Volkswagen	53\%	46\%	0.0\%	0.8\%	0.1\%	1.0\%	23.9\%
VW	52\%	46\%	0.0\%	1.0\%	0.2\%	1.3\%	11.3\%
Audi	69\%	30\%	0.0\%	0.9\%	0.0\%	0.3\%	5.5\%
Škoda	45\%	54\%	0.0\%	0.0\%	0.0\%	1.0\%	4.3\%
SEAT	36\%	63\%	0.0\%	0.0\%	0.0\%	1.0\%	2.3\%
Porsche	40\%	55\%	0.2\%	4.8\%	0.0\%	0.0\%	0.5\%
PSA	44\%	55\%	0.1\%	0.0\%	0.2\%	1.2\%	16.4\%
Peugeot	53\%	47\%	0.1\%	0.0\%	0.2\%	0.2\%	5.7\%
Opel	33\%	63\%	0.0\%	0.0\%	0.0\%	3.8\%	4.9\%
Citroën	50\%	50\%	0.0\%	0.0\%	0.4\%	0.0\%	3.6\%
Vauxhall	28\%	72\%	0.0\%	0.0\%	0.0\%	0.0\%	1.7\%
DS	51\%	48\%	0.7\%	0.0\%	0.0\%	0.0\%	0.4\%
Renault-Nissan	50\%	46\%	0.0\%	0.7\%	1.6\%	0.8\%	14.6\%
Renault	55\%	44\%	0.0\%	0.0\%	1.8\%	0.0\%	7.3\%
Nissan	50\%	46\%	0.0\%	0.0\%	2.8\%	0.7\%	3.7\%
Dacia	44\%	53\%	0.0\%	0.0\%	0.0\%	3.0\%	2.8\%
Mitsubishi	30\%	54\%	0.0\%	14.8\%	0.1\%	0.2\%	0.7\%
Ford	46\%	52\%	0.1\%	0.0\%	0.0\%	1.5\%	7.0\%
Ford	46\%	52\%	0.1\%	0.0\%	0.0\%	1.5\%	7.0\%
FCA	41\%	53\%	0.0\%	0.0\%	0.0\%	6.3\%	6.8\%
Fiat	36\%	58\%	0.0\%	0.0\%	0.0\%	6.2\%	5.1\%
BMW	67\%	30\%	0.0\%	2.0\%	1.1\%	0.0\%	6.7\%
BMW	74\%	22\%	0.0\%	2.5\%	1.3\%	0.0\%	5.4\%
Mini	38\%	62\%	0.0\%	0.0\%	0.0\%	0.0\%	1.4\%
Daimler	63\%	35\%	0.4\%	1.4\%	0.2\%	0.1\%	6.3\%
Mercedes-Benz	71\%	27\%	0.4\%	1.6\%	0.2\%	0.1\%	5.6\%
Smart	0\%	100\%	0.0\%	0.0\%	0.3\%	0.0\%	0.7\%
Toyota	14\%	45\%	40.8\%	0.1\%	0.0\%	0.0\%	4.2\%
Toyota	15\%	47\%	36.9\%	0.2\%	0.0\%	0.0\%	3.9\%
Lexus	0\%	7\%	93.2\%	0.0\%	0.0\%	0.0\%	0.3\%
Other brands							
Hyundai	42\%	56\%	0.5\%	0.0\%	0.1\%	1.5\%	3.4\%
Kia	48\%	48\%	1.9\%	0.2\%	0.7\%	1.5\%	2.9\%
Volvo	83\%	12\%	0.0\%	4.5\%	0.0\%	0.3\%	1.9\%
Honda	38\%	62\%	0.0\%	0.0\%	0.0\%	0.0\%	1.0\%

4. SUPER-CREDITS

Super-credits were introduced to incentivize car manufacturers to produce low-carbon vehicles, such as PHEVs and BEVs. According to the super-credit provision, vehicles with low CO_{2} emissions, below $50 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$, are assigned an increased weight when calculating manufacturers' average emissions.

During the first stage of super-credits, from 2013 to 2015, the following weighting factors applied: Each low-emitting car counted as 3.5 cars in 2013, 2.5 in 2014, 1.5 in 2015, and 1 starting in 2016. The second stage is planned for 2020 to 2023, although the weighting factors will be lower than in the first period. For this second phase, the following multipliers will be used: Each low-emitting car will count as 2 cars in 2020, 1.67 in 2021, 1.33 in 2022, and 1 starting in 2023. There will be a cap on super-credits' contribution to CO_{2} reductions of $7.5 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ per manufacturer over the entire period.

The number of vehicles that qualify for the super-credits showed a modest 2\% increase from 2015 to 2016. The effect of super-credits on average CO_{2} emissions of car manufacturers was rather limited. Table 4 presents the effect of super-credits on average CO_{2} emissions of both manufacturer groups and a selection of their brands in 2015 and 2016.

Table 4. Effect of super-credits on CO_{2} emissions by manufacturer group and brand. Super-credits multiplier was 1.5 in 2015 and 1.67 in 2016 (super-credits multiplier for 2021 used).

	2015 Avg. CO_{2} emissions (g / km)			Avg. $\mathrm{CO}_{2}{ }_{2}^{2016}$ emissions (g / km)			Reduction since 2015	
	w/o supercredits	w/ supercredits	Difference	w/o supercredits	w/ supercredits	Difference	w/o supercredits	w/ supercredits
Toyota	108.3	108.3	0.0	105.5	105.5	0.0	3\%	3\%
Toyota	107.9	107.8	0.0	104.6	104.6	0.0	3\%	3\%
Lexus	115.5	115.5	0.0	118.5	118.5	0.0	-3\%	-3\%
PSA	113.1	113.0	0.0	110.4	110.3	0.1	2\%	2\%
Peugeot	103.7	103.7	0.1	101.7	101.6	0.1	2\%	2\%
Citroën	105.9	105.8	0.1	103.2	102.9	0.3	3\%	3\%
DS	103.6	103.6	0.0	103.8	103.8	0.0	0\%	0\%
Opel	126.1	126.1	0.0	122.6	122.6	0.0	3\%	3\%
Vauxhall	128.5	128.5	0.0	123.6	123.6	0.0	4\%	4\%
Renault-Nissan	112.0	110.7	1.3	111.2	109.7	1.5	1\%	1\%
Renault	106.2	105.3	0.9	105.2	104.0	1.2	1\%	1\%
Nissan	114.6	113.3	1.3	116.2	114.1	2.1	-1\%	-1\%
Dacia	122.7	122.7	0.0	117.8	117.8	0.0	4\%	4\%
Mitsubishi	110.0	103.0	7.0	118.1	111.1	7.0	-7\%	-8\%
FCA	121.7	121.7	0.0	120.0	120.0	0.0	1\%	1\%
Fiat	117.8	117.8	0.0	116.4	116.4	0.0	1\%	1\%
Ford	118.0	118.0	0.0	120.0	120.0	0.0	-2\%	-2\%
Ford	118.0	118.0	0.0	120.0	120.0	0.0	-2\%	-2\%
Volkswagen	121.3	120.9	0.4	120.4	120.0	0.4	1\%	1\%
Škoda	115.5	115.5	0.0	111.9	111.9	0.0	3\%	3\%
SEAT	116.6	116.6	0.0	115.8	115.8	0.0	1\%	1\%
VW	118.8	118.2	0.6	118.7	118.0	0.7	0\%	0\%
Audi	127.8	127.2	0.6	126.2	125.9	0.3	1\%	1\%
Porsche	183.8	183.8	0.0	185.1	185.1	0.0	-1\%	-1\%
BMW	126.2	125.6	0.7	122.9	121.4	1.5	3\%	3\%
Mini	117.7	117.7	0.0	117.2	117.2	0.0	0\%	0\%
BMW	128.4	127.6	0.8	124.4	122.5	1.9	3\%	4\%
Daimler	124.7	124.3	0.5	125.3	124.7	0.6	0\%	0\%
Smart	94.1	93.2	0.9	95.9	95.8	0.2	-2\%	-3\%
Mercedes-Benz	128.7	128.3	0.4	129.0	128.3	0.7	0\%	0\%
Other brands								
Volvo	121.9	120.7	1.2	121.2	119.2	2.0	1\%	1\%
Hyundai	127.3	127.3	0.0	124.5	124.4	0.1	2\%	2\%
Kia	128.0	127.2	0.8	124.8	124.1	0.7	3\%	2\%
Honda	131.3	131.3	0.0	126.9	126.9	0.0	3\%	3\%

At the group level, the provision translated into a maximum reduction of $1.5 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ for Renault-Nissan and BMW due to the groups' comparatively high share of BEVs and/or PHEVs. At the brand level, the effect of super-credits was most notable for Mitsubishi, with a reduction of $7 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ in the average emissions of the brand.

5. INTERNATIONAL CONTEXT

In the international context, the EU has historically been a front-runner with respect to vehicle emission targets. In recent years, however, most large economies have set converging CO_{2} emission targets for new vehicles (Figure 3). Compared to the EU's 2020/21 target of $95 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$, the United States ($99 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ for 2025 passenger cars), South Korea ($97 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ by 2020), and Canada ($99 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ by 2025) have set similar targets.

Figure 3. Comparison of global CO_{2} regulations for new passenger cars. ${ }^{8}$

6. OUTLOOK

It should be noted that the EEA dataset has yet to be validated. The final dataset will be published at the end of 2017, so the specific numbers in this report may change. ${ }^{9}$ The preliminary data for 2016 should, however, provide relatively reliable results. Real-world emissions are significantly higher than the official values used here. The gap between official and real-world CO_{2} emission values of European cars has been widening over time and reached approximately 42% in 2015 , indicating that the values

[^6]ICCT BRIEFING
presented in this briefing significantly underestimate on-road emissions and fuel consumption. ${ }^{10}$ The ICCT will follow up on European emissions data in the forthcoming European Vehicle Market Statistics Pocketbook 2017/2018.11

10 Uwe Tietge, et al., From laboratory to road - A 2016 update of official and "real-world" fuel consumption and CO_{2} values for passenger cars in Europe, (ICCT: Washington DC, 2016). http://www.theicct.org/laboratory-. road-2016-update.

11 International Council on Clean Transportation, European vehicle market statistics pocketbook 2017/2018 http://eupocketbook.org.

[^0]: 1 Sonsoles Díaz, Uwe Tietge, and Peter Mock, CO_{2} emissions from new passenger cars in the EU: Car manufacturers' performance in 2015 (ICCT: Washington DC, 2015). http://www.theicct.org/co2-from-new-cars-eu-2015.
 2 European Environment Agency, "Monitoring of CO_{2} emissions from passenger cars - Regulation 443/2009" (2017). https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-12.

[^1]: Prepared by: Murat Șenzeybek, Uwe Tietge, Peter Mock

[^2]: 3 The factor of $23.3 \mathrm{~g} \mathrm{CO}_{2} / \mathrm{km}$ per liter gasoline/ 100 km was used to convert from CO_{2} emissions to fuel consumption.

[^3]: 4 Manufacturers are defined here as: PSA (Citroën, Peugeot, DS Automobiles, with and without Opel); Toyota (Daihatsu, Lexus, Toyota); Renault-Nissan (Dacia, Infiniti, Lada, Nissan, Renault, with and without Mitsubishi); Ford (Ford, Lincoln); FCA (Alfa Romeo, Chrysler, Dodge, Fiat, Jeep, Lancia, Maserati); Volkswagen (Audi, Bentley, Bugatti, Lamborghini, Porsche, SEAT, Śkoda, Volkswagen); Daimler (Mercedes-Benz, Smart); and BMW (BMW, Mini). Mitsubishi Motors joined the Renault-Nissan alliance in October 2016. Opel was acquired by PSA in March 2017.

[^4]: 5 For details on the recent developments in diesel market shares in Europe see "Cities driving diesel out of the European car market," Uwe Tietge and Sonsoles Díaz, 16 May 2017, http://theicct.org/blogs/staff/cities-.. driving-diesel-out-european-car-market.

 6 Because the EEA data do not include details on plug-in hybrid electric vehicles, EEA data have been supplemented with commercial data obtained from IHS-Polk.

[^5]: 7 For details on electric vehicle sales in Sweden see "Lessons learned from Sweden's electric vehicle rollercoaster," Uwe Tietge, 14 February 2017, http://www.theicct.org/blogs/staff/lessons-learned-sweden-EVrollercoaster.

[^6]: 8 China's target reflects gasoline vehicles only. U.S. CO_{2} emission values are derived from fuel economy standards set by NHTSA, reflecting tailpipe GHG emission (i.e., they exclude low-GWP refrigerant credits incorporated in the U.S. EPA GHG regulation). Gasoline in Brazil contains 22\% ethanol (E22); all data in the chart have been converted to the gasoline (EOO) equivalent. Supporting data can be found at www.theicct.org/info-tools/global-passenger-vehicle-standards.

 9 Historically the difference between preliminary and final data has been low. In 2015, there was a less than 0.01% difference in the preliminary and final data for average CO_{2} emissions.

