On-Board Diagnostics (OBD) Program Overview

California Air Resources Board

Allen Lyons

April 2015
Mexico City
Presentation Outline

- OBD History and Background
- OBD Requirements
- OBD Certification
- OBD Enforcement
- OBD and Smog Check
OBD II Regulation - History

• Adopted by Air Resources Board in 1989
 o Implementation began in 1994
 o Full Implementation achieved in 1996
 o Over 150 million OBD II-equipped vehicles operating in the United States today

• Vehicle Applications (<14,000 pounds)
 o Passenger cars
 o Light-duty trucks
 o Medium-duty vehicles and engines

• OBD requirements adopted for heavy-duty vehicles in 2005 (HD OBD, >14,000 pounds)
 o Full implementation in 2013
Keeping In-use Cars and Trucks Clean

• Low emission vehicles depend on numerous and complex emission controls to clean up a dirty combustion process
 o Emission solutions are increasingly complex

• Malfunctions can increase emissions to many times the certification standards
 o Deterioration
 o Improper maintenance
 o Manufacturing defects
 o Tampering
On-Board Computer

- Modern vehicles use on-board computers
 - Control fuel metering (fuel injection)
 - Actuate EGR and purge valves, etc.
 - Regulate anti-lock braking
 - Control transmission

- OBD II is an extension of the computer
What is On-Board Diagnostics?

• A system in the engine’s on-board computer that monitors the performance of almost every emission-related components for malfunctions

• Uses information from sensors to judge performance of emission controls
 ○ Sensors do not directly measure emissions

• Mostly software that runs diagnostics in the background
Malfunction Indicator Light (MIL)

- A warning light will appear on the vehicle's instrument panel to alert the driver if a malfunction is detected.
OBD Monitoring Scope

• Virtually every source of excessive vehicle emissions is monitored

<table>
<thead>
<tr>
<th>Monitoring Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst Efficiency</td>
</tr>
<tr>
<td>Misfire Detection</td>
</tr>
<tr>
<td>Evaporative System</td>
</tr>
<tr>
<td>Secondary Air</td>
</tr>
<tr>
<td>Fuel System</td>
</tr>
<tr>
<td>Exhaust Gas Sensors</td>
</tr>
<tr>
<td>Exhaust Gas Recirc.</td>
</tr>
<tr>
<td>Crankcase Ventilation</td>
</tr>
<tr>
<td>Engine Cooling System</td>
</tr>
<tr>
<td>Cold Start Strategies</td>
</tr>
<tr>
<td>Variable Valve Timing</td>
</tr>
<tr>
<td>Direct Ozone Reduction</td>
</tr>
<tr>
<td>Air Metering System</td>
</tr>
<tr>
<td>Transmission controls</td>
</tr>
<tr>
<td>Forced air systems</td>
</tr>
<tr>
<td>Hybrid System</td>
</tr>
<tr>
<td>Engine speed/angle</td>
</tr>
</tbody>
</table>
Standardized Information

- When a malfunction is detected, information about the malfunctioning component is stored.
- Technicians can download the information with a "scan tool" to help fix the vehicle.
- Information is also used by Smog Check inspectors.
- Information is communicated in a standardized format so one tool works with all vehicles (SAE and ISO standards).
Why Is OBD Needed?

• Maintain Emission Control Systems In-Use
 o Deterioration with age
 o Oldest 20% of vehicles cause 60% of pollution

• Help Technicians Properly Diagnose and Repair Complex Problems
Other Benefits of OBD

• Encourages design of durable and robust emission control systems

• Helps keep emissions low by identifying emission controls in need of repair

• Provides for effective/inexpensive emission inspections

• Works for life of the vehicle
Durable Components

- Cause of MIL Subject to Emissions Warranty
 - 3 Year / 50,000 miles (EGR, O2, etc.)
 - 7 Year / 70,000 miles (catalyst, computer)
 - 15 Year / 150,000 miles for PZEV

- Durability Less Expensive than Replacement
Consumer Cost Benefits

- **Early Detection of Malfunctions**
 - Prevent secondary malfunctions (e.g., detect misfire before catalyst damaged)
 - Marginal components replaced during warranty

- **Eliminates Unnecessary Repairs**
 - Fault codes and other scan tool data give information about area of malfunction or the specific component
 - Contrast: tailpipe test simply identifies high emissions, but not fault information, repairs are often trial and error
Aspects of an Effective OBD Program

- Clarification of requirements (reg. updates/guidance documents)
- Enforcement/remedial action, in-use issues
- Certification

OEM submits application

Staff review of application

Certification

Regulations

Enforcement
Amendments

- The regulation has often been amended to improve effectiveness and to accommodate new vehicle technologies

- Adopted 1989
- Other minor amendments through other rulemakings
- Rulemakings Available on the ARB OBD website: http://www.arb.ca.gov/msprog/obdprog/obdregs.htm
OBD Requirement Concepts

• Emission threshold monitoring
 o Malfunction Indicator Light on when emissions increase X%
 o Usually based on 1.5 x standards
 o 8-20 per vehicle

• Non-emission threshold monitoring
 o Comprehensive components
 o Functional, rational, electrical
 o 75-200 diagnostics per vehicle

• Standardization Requirements
 o Information OBD system required to store

• OBD testing and validation
 o Pre- and post-production; by vehicle manufacturer
Basic OBD Diagnostic Procedure

• System waits for right monitoring conditions
• Observes Signals Entering the Computer
 - Directly from the component/system, or
 - Related to performance of component/system

• Verifies Performance / Functionality / Rationality
 - Malfunction criteria

• Notifies Driver of Fault
 - MIL illumination
 - Unique fault code storage
 - Freeze frame information
Example of how OBD works: Catalyst Monitoring

- Oxygen sensor data used to evaluate catalyst conversion performance.
- Manufacturer correlates tailpipe emissions with catalyst system performance based on oxygen sensor data.
- OBD system is calibrated to turn on MIL and store fault information for the catalyst when performance drops to the point where emissions exceed malfunction threshold (1.75 X HC or NOx standard).
Catalyst Monitoring Technology

- Monitoring Method: Oxygen sensors before and after the catalyst(s)
- Oxygen storage used to infer HC conversion efficiency
Catalyst Monitor Emissions Correlation

§1968.2(e)(1)
Certification

• Vehicle manufacturer required to submit certification application for review and approval. Application includes:
 o Detailed specifications for all monitors in format prescribed in regulation
 o Demonstration emission test data
 o Any other information/diagrams/data used to support OBD system

• ARB Mail-Out #06-23
 http://www.arb.ca.gov/msprog/obdprog/obdupdates.htm
Certification

• Require detailed disclosure of strategies at the time of certification

• Careful review of trained engineers to understand and look for loopholes/shortcomings
 - OBD certification engineers need to understand OBD system nearly as well as the manufacturer engineers
 - Needed for effective certification and enforcement

• Ability to still get certified and sell with shortcomings but require correction for future model years
 - Deficiencies are important part of successful program

• Reasonable amount of data included to support compliance of system (e.g., demonstration data)
<table>
<thead>
<tr>
<th>Component/System (example)</th>
<th>Fault Code</th>
<th>Monitor Strategy Description</th>
<th>Malfunction Criteria</th>
<th>Threshold Value</th>
<th>Secondary Value</th>
<th>Enable</th>
<th>Time Conditions</th>
<th>Required MIL Conditions</th>
<th>Required MIL Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>P0420</td>
<td>oxygen storage</td>
<td>rear oxygen sensor period vs. front oxygen sensor period</td>
<td>>.75</td>
<td>engine speed</td>
<td>>20%</td>
<td>1000<rpm<4000 0</td>
<td>20 seconds</td>
<td>two trips</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>engine load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECT</td>
<td></td>
<td>>70C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAP</td>
<td></td>
<td>> 25 kPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fuel system status</td>
<td></td>
<td>closed loop</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGR System</td>
<td>P0401</td>
<td>difference in MAP readings</td>
<td>delta MAP</td>
<td>< 10 kPa</td>
<td>vehicle speed</td>
<td>> 35 mph</td>
<td>3 seconds</td>
<td>two trips</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECT</td>
<td></td>
<td>> 70C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fuel system status</td>
<td></td>
<td>fuel-cut</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>battery voltage</td>
<td></td>
<td>> 11.0 volts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manifold Absolute Pressure (MAP) Sensor:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL not illuminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP High</td>
<td>P0108</td>
<td>Out of Range High</td>
<td>MAP Voltage</td>
<td>> 4.0 V (110 kPa)</td>
<td>Engine Speed</td>
<td>> 300 rpm</td>
<td>Continuous</td>
<td>one trip</td>
<td></td>
</tr>
<tr>
<td>MAP Low</td>
<td>P0107</td>
<td>Out of Range Low</td>
<td>MAP Voltage</td>
<td>< 0.15 V (15 kPa)</td>
<td>Engine Speed</td>
<td>> 300 rpm</td>
<td>Continuous</td>
<td>one trip</td>
<td></td>
</tr>
<tr>
<td>MAP Rationality</td>
<td>P0106</td>
<td>Comparison of modeled MAP to actual MAP signal</td>
<td>High Rationality</td>
<td>MAP Voltage: < 3.1 (65 kPa)</td>
<td>Engine Speed</td>
<td>1000 to 5000</td>
<td>2 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vehicle Speed: > 10 mph</td>
<td>Calculated load</td>
<td>> 50%</td>
<td>Monitor runs whenever enable conditions are met</td>
<td>fuel system status</td>
<td>Fuel Cut</td>
</tr>
</tbody>
</table>
In-Use Compliance

• Key to ensuring as-built cars actually match design/certification.
• Does OBD system work as described by manufacturer? If not, find out why.
• Combination of manufacturer self-testing and agency testing
• Divided into distinct regions to focus on areas where problems have previously been found
Compliance Testing: Manufacturer Self-Testing

• Demonstration Testing
 o Shows that malfunctions are detected before emissions exceed thresholds (e.g., 1.5 X emission standards)

• Communication standardization via J 1699
 o Makes sure that production vehicles properly handle/communicate required information through data link

• Diagnostic function
 o Manufacturers have to implant faults and verify detection on production vehicles

• IUMPR - In-use Monitor Performance Ratios
 o Tracks how frequently monitors really run on the road. Data reported to ARB for review.
Compliance Testing
Agency Enforcement Testing

- Confirmatory testing of demonstration vehicles
 - ARB duplicates testing to verify that malfunctions are detected before emissions exceed threshold levels (e.g., 1.5 x standards)

- Actual in-use vehicle testing by engineers with implanted faults, dyno and on-road driving, data logging.
 - Do the monitors run when they are supposed to?
 - Do they detect malfunctions that are implanted?
 - Is the right data stored when a malfunction is detected?
 - .. And so on.
Enforcement: Remedial Action

- Criteria to determine appropriate remedial action in enforcement regulations

- Remedial action varies from nothing up to recall and fines
 - Field fix software
 - Service bulletin
 - Notification to OBD clearinghouse: http://obdcleaninghouse.com/

- Mandatory recall if a major monitor is non-functional, or if defect prevents I/M testing
Background: OBD II and I/M

- OBD II designed from the beginning as an I/M Tool
 - Comprehensive monitoring requirements
 - Fault thresholds based on emission standards
- Readiness Indicators
OBD Based I/M Procedure

1. Does the MIL work? (Key on engine off)
2. Is the vehicle ready for an inspection?
 - No recent code clearing
3. Is the MIL commanded off?
 - If YES to all 3: PASS
 - If NO, remedy as necessary:
 - Fix MIL lamp or wiring
 - Conduct more in-use driving and return for re-inspection
 - Fix detected fault and return for re-inspection
Benefits over Tailpipe I/M

- More comprehensive fault detection
 - All emission-related components individually monitored
 - Cold start problems detected
 - Evaporative emission problems detected
 - Broad in-use testing conditions
 - OBD failure rates 2.5X ASM failure rates

- Convenience
 - Faster (less than 5 minutes)
 - No surprises (MIL off = pass, unless recently serviced)
 - Less expensive
Pre-Inspection Benefits

- Most detected faults are addressed before inspection
- Failure rates / Benefits much higher than Smog Check database would indicate
- Data indicates that benefits may be 3 times as high as indicated by Smog Check failure rate.
Time/Cost Savings

• OBD II Inspections can be completed in a matter of few minutes
• Cost savings could be $15 to $35 per test

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Cost Savings Range ($/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>$107M - $305M</td>
</tr>
<tr>
<td>2020</td>
<td>$139M - $356M</td>
</tr>
</tbody>
</table>

• Continued tailpipe testing along with OBD inspections not cost effective:
 o $300K to $900K per ton HC + NOx

• http://www.arb.ca.gov/msprog/smogcheck/march09/transitioning_to_obd_only_im.pdf
Fraud Detection

A given vehicle should have specific values.
• Most should not change from one inspection to the next.

○ VIN
 • Vehicle specific
 • Should not change

○ Readiness Profile
 • A given make/model/year should have a specific readiness profile
 • Possible to change (running change), but usually rare

○ ECU Address
 • A given make/model/year should have specific value that won’t change
More “Fingerprinting” Data

- **Cal ID / CVN**
 - Combinations are make/model/year specific.
 - May change (field fixes), but still make/model/year specific

- **Communication Protocol**
 - Shouldn’t change
 - Mostly useful for older vehicles
 - (all newer vehicles use same protocol)

- **Supported Parameter IDs (PID Count)**
 - Calculated value based on the types of data the vehicle supports
 - Careful implementation necessary to ensure calculations are consistent
Readiness Indicators

- Show whether or not major monitors have run since computer memory was last clear.
- When the indicators are “ready”, it means that the OBD system is ready for inspection.
- When too many indicators are “not ready”, faults could exist that haven’t been detected yet by the OBD system.
- If the emission control is not on the vehicle (e.g., secondary air), the readiness indicator status will be “unsupported”, which is functionally equivalent to “ready”
Readiness Profile (Gasoline)

- Misfire
- Fuel System
- Comprehensive Components
- Catalyst
- Catalyst Heater
- Evaporative System
- Secondary Air
- Air Conditioning
- Oxygen Sensor
- Oxygen Sensor Heater
- EGR

A profile that has changed from one inspection to the next, is inconsistent with similar vehicles, or is faulty may indicate fraud.

- Black = Always supported (1998+)
- Green = Always supported/complete
- Red = Always unsupported
- Orange = May / May Not be Supported
Detecting Fraud “Clean Scanning”

- 2005 Chevy 3.8 liter tested instead of 2000 Chevy 2.2 liter

<table>
<thead>
<tr>
<th>VIN</th>
<th>PCM Vin</th>
<th>MY</th>
<th>Make</th>
<th>Eng Size</th>
<th>misfire</th>
<th>fuel</th>
<th>CCM</th>
<th>Cat</th>
<th>HCAT</th>
<th>EVAP</th>
<th>Sec Air</th>
<th>AC</th>
<th>O2</th>
<th>O2 H</th>
<th>EGR</th>
<th>Protocol</th>
<th>NCA_CAL_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G1JC1249Y7140173</td>
<td>1G1JC1249Y7140173</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12221143</td>
</tr>
<tr>
<td>1G1JC1249Y7143042</td>
<td>1G1JC1249Y7143042</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>V</td>
<td>12221083</td>
</tr>
<tr>
<td>1G1JC1249Y7145308</td>
<td>2G1WH52K459178966</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12594513</td>
</tr>
<tr>
<td>1G1JC1249Y7145924</td>
<td>1G1JC1249Y7145924</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12221143</td>
</tr>
<tr>
<td>1G1JC1249Y7150198</td>
<td>1G1JC1249Y7150198</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12221143</td>
</tr>
<tr>
<td>1G1JC1249Y7150945</td>
<td>1G1JC1249Y7150945</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12221143</td>
</tr>
<tr>
<td>1G1JC1249Y7151268</td>
<td>1G1JC1249Y7151268</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12206343</td>
</tr>
<tr>
<td>1G1JC1249Y7151710</td>
<td>1G1JC1249Y7151710</td>
<td>2000</td>
<td>CHEV</td>
<td>2200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>V</td>
<td>12221163</td>
</tr>
</tbody>
</table>

0=unsupported
1=supported/complete
2=supported/incomplete
<table>
<thead>
<tr>
<th>VIN</th>
<th>PCM Vin</th>
<th>MY</th>
<th>Make</th>
<th>Eng Size</th>
<th>misfire</th>
<th>fuel</th>
<th>CCM</th>
<th>Cat</th>
<th>HCAT</th>
<th>EVAP</th>
<th>Sec Air</th>
<th>AC</th>
<th>O2</th>
<th>O2 H</th>
<th>EGR</th>
<th>Protocol</th>
<th>NCA_CAL_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA3AH86DX5U011933</td>
<td>JA3AH86DX5U011933</td>
<td>2005</td>
<td>MITS</td>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1860A118AA</td>
<td></td>
</tr>
<tr>
<td>JA3AH86D85U049791</td>
<td>JA3AH86D85U049791</td>
<td>2005</td>
<td>MITS</td>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>01</td>
<td>1860A118AA</td>
<td></td>
</tr>
<tr>
<td>JA3AH36D15U048114</td>
<td>JA3AH36D15U048114</td>
<td>2005</td>
<td>MITS</td>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1860A118AA</td>
<td></td>
</tr>
</tbody>
</table>

• 2005 Mitsubishi Lancer Evolution
Continuous Testing

- Also known as “OBD III” or “Remote OBD”
- Vehicle OBD system status is periodically/continuously transmitted and recorded
- Vehicles without problems don’t have to be inspected
- If a vehicle has a malfunction, the owner addresses it within a reasonable period of time.
Remote OBD Technologies

- Cellular
- Short Range
 - Wifi
 - FM
 - Bluetooth
- OEM Telematics
 - On-star
Continuous Testing Benefits

- More emission benefits
 - shortens time between detection and repair
 - directly addresses code clearing
- Better year round compliance
- Added convenience for passing vehicles

Increased Benefits over Biennial Testing
(Oregon CY 2015)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>25.8%</td>
</tr>
<tr>
<td>NOx</td>
<td>22.1%</td>
</tr>
</tbody>
</table>

- FACA Transitioning I/M report
Continuous Testing Status

- Some pilot programs have taken place, but no widespread implementation yet
- Program start up costs
- Privacy issues