Feed aggregator

GM To Forge Ahead With Electric, Plug-In Hybrid, Other Electrified Vehicles

Pipe: Passenger vehicles - Sun, 2015-03-29 08:00
The U.S. requires carmakers to reach a Corporate Average Fuel Economy (CAFE) goal of 54.5 mpg (equivalent to about 42 mpg on the window ...

Total natural gas vehicle sales in US down 6.5% in 2014 due to 34% drop in light-duty sales; medium- and heavy-duty up

Pipe: Advanced tech - Sun, 2015-03-29 07:00

In 2014, light-, medium-, and heavy-duty natural gas vehicle (NGV) production/sales in the US totaled just over 18,000 vehicles, down 6.5% from 2013, according to NGVAmerica’s 2014 NGV Production/Sales Report. The report is based on the organization’s annual survey of OEMs and approved aftermarket suppliers.

The heavy-duty market segment grew at a healthy pace, up 30% over 2013. The medium-duty market segment also grew steadily, up 24% over 2013. The light-duty segment fell 34% from 2013, mostly related to a drop in orders from the gas and oil exploration and production (E&P) sector.

Source: NGVAmerica. Click to enlarge.

The report shows overall sales for the year fell slightly as a result of the drop in the price of oil that occurred in the second half of the year and the impact this had largely on sales of light-duty NGVs to oil and gas exploration companies.

While 2014 saw some utility orders, many utilities had “loaded up” on NGV orders in 2012 and 2013; thus, the orders from this segment were down compared to the previous two years. The municipal segment did not decline as much as other segments. This is likely due to municipalities committing to purchases based on sustainability goals rather than pure economics, the report suggests.

While AT&T and several other large commercial accounts took delivery of NGVs in 2014, they achieved their target deployment goals earlier in the year. Miscellaneous small orders from small commercial accounts were not finalized as gasoline prices fell, further contributing to the decline in commercial segment orders.

The report predicts that as the price of oil rebounds, NGVs’ economic value proposition will improve further, and when combined with the other advantages of natural gas—stable fuel prices, reliable technology and reduced emissions—sales growth will once again accelerate.

In contrast, significant growth occurred in both the medium- and heavy-duty market segments as a result of the still favorable economics these higher-fuel use applications generate.

  • The medium-duty market increase was due to a mix of shuttles, utility cab-chassis orders, and several good size commercial box truck cab-over-engine (COE) orders. This market is poised for continued growth as more platforms become available and as incremental price premiums drop, strengthening the overall economic value proposition, the report suggested.

  • The heavy-duty segment benefitted from market drivers in three distinct areas: continued growth in refuse truck sales and strong transit bus orders; the first full-year availability of a new engine platform (Cummins Westport ISX-12G 11.9L); and continued growth in dual-fuel systems.

Refuse truck sales captured more than 50% of the market. Natural gas transit bus orders were especially strong in 2014, as many existing agencies began replacing original natural gas units purchased in the late 1990s and early 2000s. Several new agencies also began transitioning to natural gas.

The report projects continued growth in the heavy-duty sector this year with similar sales gains in the (CWI) ISL-G 8.9L engine in refuse and transit applications, and a more robust sales performance of the ISX-12G engine in trucking and other heavy-duty applications.

However, sales growth in both the heavy- and medium-duty sectors will continue to be tempered by and dependent upon the price of oil and the demand for diesel fuel.

The report forecasts continued lower performance in the light-duty sector because of the relatively low price of oil, resulting in high storage supplies and low gasoline prices, and the high fuel economy and relatively low fuel use in most light-duty applications.

Taj Corridor now an animal graveyard, garbage dump

Pipe: India - Sun, 2015-03-29 04:15
The Taj Corridor, a vast wasteland situated along the Yamuna river and lying between two world heritage monuments, the Taj Mahal and the Agra Fort, has now been reduced to a dumping ground for garbage and an unofficial burial ground for animals.

Rennsport-Gemälde: Benzinbilder in Öl

Pipe: Europe - Sun, 2015-03-29 03:16
"Weniger Regeln, weniger Profitorientierung, aber viel mehr PS": Alex Wakefields Leidenschaft ist der Motorsport der Siebziger- und Achtzigerjahre. Die Kämpfe auf der Piste malt er in Öl - und erzielt für seine Werke stattliche Preise.

Acura's value-packed sedan

Pipe: Passenger vehicles - Sun, 2015-03-29 03:07
The TLX SH-AWD's fuel economy is at the top of its class. The EPA rates it at 21 mpg in the city, 31 on the highway and 25 combined. The TLX ...

Compact changes

Pipe: Passenger vehicles - Sun, 2015-03-29 01:03
However, with their prices and generally outstanding fuel economy, along with the inclusion of features normally found on larger, more expensive ...

Google iLUC alert: AgroNotícias PORTUGAL: Continua a discussão sobre o uso dos solos para...

ICCT ILUC - Sun, 2015-03-29 00:47
Uma das propostas é juntar à legislação europeia uma medida denominada ILUC, que significa Indirect Land Use Change, que possa regulamentar o uso dos solos para este fim.As organizações de agricultores...

Eiffel Tower goes dark in symbolic move for Earth Hour

Pipe: India - Sun, 2015-03-29 00:39
The Eiffel Tower went dark briefly to mark Earth Hour, the campaign to raise awareness about climate change.

Test Drive: Reliability, good handling the mark of Camry Hybrid

Pipe: Passenger vehicles - Sun, 2015-03-29 00:07
The 2015 Camry Hybrid uses the same gasoline/electric system, with the same reliability, and an EPA city/highway/combined fuel economy rating of ...

How Idealism, Expressed in Concrete Steps, Can Fight Climate Change

Pipe: Climate and Health - Sun, 2015-03-29 00:00
Where global warming conferences and protocols have largely failed, economics and motivation might solve a seemingly intractable problem.

Mumbai turns off lights in support of Earth Hour

Pipe: India - Sat, 2015-03-28 19:44
As the clock struck 8.30 on Saturday evening, hundreds of homes and the city’s iconic buildings switched off lights to extend support for the cause of climate change. Mumbai, along with over 6,000 cities across the world, participated in the Earth Hour.

Cargazing: Lexus mixes attitude with turbocharger

Pipe: Passenger vehicles - Sat, 2015-03-28 14:22
We found EPA fuel economy numbers to be right on the money across the board, even higher with highway mileage just below 30 mpg.

2015 Dodge Charger a whole family muscle car

Pipe: Passenger vehicles - Sat, 2015-03-28 13:48
It develops 485 hp and 475 lb-ft of torque, with an estimated fuel economy of 18 mpg combined (15/25) for the Charger using the 6.4-liter engine.

Ferrari Will Not Turbocharge V-12s Any Time Soon

Pipe: Passenger vehicles - Sat, 2015-03-28 12:52
In short, the company's upcoming V-12 engines will not be augmented by turbochargers for better fuel economy, but will get more oomph and ...

Ford's Aluminum F-150 Gets a $259 Million Boost From Uncle Sam

Pipe: Passenger vehicles - Sat, 2015-03-28 11:00
That switch has the potential to boost fuel economy by 5% to 20% depending on the model. Not only does that save consumers a bundle on gas, but ...

HondaJet receives provisional type certification from FAA

Pipe: Advanced tech - Sat, 2015-03-28 08:15

Honda Aircraft Company announced that the HondaJet has received provisional type certification (PTC) from the United States Federal Aviation Administration (FAA). (Earlier post.) This achievement indicates the FAA’s approval of the HondaJet design based on certification testing, design reviews, and analyses completed to date.

A provisional type certificate is a design approval by the FAA and is common for business jets when final certification is near. Honda Aircraft has demonstrated that the HondaJet is safe for flight and meets the airworthiness standards defined by the PTC.

Honda Aircraft is targeting final FAA type certification in the next few months, following the completion of final testing and approval by the FAA.

The four HondaJets in the flight test fleet have performed as expected and flown more than 2,500 hours. The flight test program has conducted extensive testing for certification at more than 70 locations in the United States.

The HondaJet is being manufactured at Honda Aircraft Company’s world headquarters in Greensboro, North Carolina, where aircraft production is underway in preparation for customer deliveries. The final assembly line is full with 12 aircraft and another five are currently in the production flow. Honda Aircraft will begin first deliveries after FAA type certification is achieved.

The HondaJet was developed from a clean sheet design and incorporates advanced technologies and innovations. The HondaJet Over-The-Wing Engine Mount (OTWEM) configuration, natural-laminar flow wing and composite fuselage were developed from long-term Honda research activities. These innovations combine to make the HondaJet the fastest, most spacious and most fuel-efficient jet in its class.

BNL team develops very high capacity ternary metal fluoride cathode material for Li-ion batteries

Pipe: Advanced tech - Sat, 2015-03-28 07:42

The team achieved three-times-higher storage capacity through the reversible redox reactions of copper and iron—breaking and reforming copper-fluorine and iron-fluorine bonds while absorbing and releasing lithium. Source: BNL. Click to enlarge.

A team led by researchers at Brookhaven National Laboratory (BNL) has found that adding copper atoms to iron fluoride—a member of the class of materials called transition metal fluorides that are potential extremely high-capacity cathodes for future Li-ion batteries—produces a group of new fluoride materials that can reversibly store three times as many Li ions as conventional cathode materials. Measurements also indicate that these new materials could yield a cathode that is extremely energy-efficient. Their research is described in an open access paper in the journal Nature Communications.

The capacity of mainstream conventional cathodes (e.g., LiCoO2 or LiFePO4) is low (140–170 mAh g−1) and currently limits the energy density of most commercial cells, the researchers note. Although a number of alternative anodes (such as ​silicon and tin) show capacities well above 500 mAh g−1, few cathodes have been identified that can the high capacity. However, transition metal fluorides, which contain the element fluorine plus one or more of the transition metals, such as iron and copper, have much higher ion-storage capacities than traditional cathodes.

While a conventional cathode stores ions between the layers of its molecular structure (intercalation) the metal fluorides store them via a reversible electrochemical reaction, called a conversion reaction. During this multi-step process, the metals oxidize (lose electrons) and break from the fluorine atoms. The lithium ions then bond temporarily to the fluorine atoms.

Despite the theoretical promise of metal fluorides, issues related to reversibility, energy efficiency and kinetics have prevented their practical application. As an example, copper fluoride (CuF2) has a very high potential voltage as a cathode material but low electrochemical activity; additionally, its conversion reaction is not reversible. The iron fluorides (FeF2 and FeF3), are reversible but their working voltages are low and they are not sufficiently energy-efficient enough.

Recently, extensive research on metal fluoride cathodes has provided new insights into the mechanisms involved in the conversion reactions and the issues relevant to cycling reversibility and efficiency (for example, hysteresis). Although poor electronic and ionic transport plague many conversion electrodes, recent studies show that the electronic conductivity in​FeF2 improves lithiation and approaches that of metallic Fe. The percolating Fe network formed during lithiation provides a facile electronic pathway and the high interfacial area provides abundant pathways for rapid Li+ transport.

In contrast, the conversion reaction in CuF2 involves highly mobile Cu2+ ions, which leads to coarsening and growth of large, isolated Cu particles during lithiation, making reconversion difficult. In addition, a recent study of the ​CuF2 conversion reaction by Hua et al. clearly showed that the dominant reaction occurring during the 1st charge is the dissolution of Cu into the electrolyte to form an unidentified Cu+ species, resulting in considerable loss of capacity.

An intriguing new concept, derived from these recent findings, is the possibility of substituting Cu into the Fe fluoride system, and thereby forming a ternary solid–solution CuyFe1-yF2. An electrode configured in this way would potentially benefit from the percolating iron network, which may be effective at ‘trapping’ Cu ions allowing them to fully oxidize into Cu2+. The addition of a second cation into a solid–solution is also an effective strategy for tailoring electrochemical properties (thermodynamics and kinetics) and improving electrochemical performance, as already demonstrated in many electrodes. Surprisingly, despite tremendous research on the binary metal fluorides, studies of conversion reactions in the ternary fluorides (involving two transition metal cations) have been largely overlooked.—Wang et al.

The BNL work builds on two other studies recently published in the Journal of the American Chemical Society and Nature Communications, which reveal the merits of FeF2 for use in batteries, particularly for achieving highly reversible lithium conversion reactions.

In this latest work, Feng Wang, a physicist in Brookhaven's Sustainable Energy Technologies Department, and colleagues Sung-Wook Kim, Liping Wang, and Dong Su of Brookhaven Lab; Dong-Hwa Seo and Kisuk Kang of Seoul National University (Korea); and John Vajo, John Wang, and Jason Graetz of HRL Laboratories investigated the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2=Fe, Cu).

The studies were conducted at two DOE Office of Science user facilities, the National Synchrotron Light Source (NSLS, now closed and replaced by the new NSLS-II) and the Center for Functional Nanomaterials.

The group began with FeF2 and then incorporated copper atoms into the iron lattice. They synthesized many samples, containing different ratios of copper and iron, and studied them in operando, simultaneously tracking the samples’ reactivity and structural properties.

The network of iron atoms “traps” the copper atoms and results in a cooperative oxidation reaction, ultimately allowing the copper ions to undergo the reversible redox reaction. Moreover, the reaction is achieved with an extremely low voltage hysteresis. This parameter is a measure of how strongly the reaction draws on the voltage of the system; in short, it is a measure of how energy-efficient the cathode is during the charging process.

We were surprised that the measured hysteresis is so low. In fact, it is the lowest reported yet in any of the metal fluorides, indicating the potential for achieving high-energy efficiency in cathodes made with them. And in a broader sense, this work shows that the addition of a second positive ion may provide a new avenue for tailoring key electrochemical properties of conversion-type electrodes.—Feng Wang

A patent related to this work was filed in January of this year, titled “High-Energy Cathodes for Lithium Rechargeable Batteries.” The patent positions this metal fluoride as a low-cost upgrade for the cathodes in existing Li-ion batteries and is aimed at possible commercial applications. As in the journal paper, the patent application describes how the material was characterized and tested. But it also provides additional details into how the material is synthesized and the steps to fashion it into a working cathode.

Measurements of cathode performance. The researchers synthesized solid solutions of the ternary metal fluorides via mechanochemical reactions. These samples were made into test cells and their electrochemical behavior measured as the cell was discharged and charged. The measurements show that the system’s electrochemical properties are guided by the cooperative oxidation and reduction (redox) that occurs when the copper and iron are sitting on the same lattice.

For example, the measurements do not show the voltage dip during iron conversion that is exhibited by pure FeF2, indicating that iron conversion in the samples occurs with less energy. Measurements taken during the redox reaction of the copper atoms reveal peaks that show up cycle after cycle, indicating the reversibility of that reaction, unlike in pure CuF2.

The group achieved further insight into the redox reactions, and corroboration of the electrochemical measurements, using in-operando x-ray absorption spectroscopy techniques at NSLS. X-ray beams were aimed at the samples as they charged and discharged. As they passed through the sample, some of the x-rays were absorbed. These absorption patterns give the scientists a way to see what was happening in the cell in real time. The techniques are element-specific, meaning they are tuned to return information about a single element, such as copper.

The x-ray data show that, on discharge, as lithium ions enter the cathode, the copper conversion occurs first, followed by the iron conversion at lower voltages. The copper-iron and iron-fluoride bonds break, yielding to the lithium ions, while metallic copper-copper and iron-iron bonds form between the freed metal atoms. Upon charging, the copper-iron bonds reform, as evident by a strong peak in the x-ray absorption data that is nearly identical in position and shape to the original material—another hallmark of good reversibility.

Further x-ray data was taken to learn more about what happens to the copper atoms after the first discharge and charge cycle, and into the second discharge. The researchers note an issue with copper ions dissolving, which leads to a breakdown of cell performance. They suggest possible mitigation methods, such as surface coatings to stabilize the electrode at high potentials or barrier layers to prevent copper ion crossover. These fixes may be explored in future studies.

Wang and his team plan to continue investigating this new type of copper-based fluoride for battery applications at Brookhaven’s new synchrotron, National Synchrotron Light Source II, the world’s brightest synchrotron light source.

Down the road, we plan to closely examine how they degrade after repeatedly absorbing and releasing lithium, in order to find remedies for this behavior. The new NSLS-II XPD beamline, designed for in-situ and operando studies of materials, is the ideal tool for imaging the full local and global structure of our samples during cycling, in real time and under real-world reaction conditions.—Feng Wang

This research was initiated as part of the Northeastern Center for Chemical Energy Storage, one of the Energy Frontier Research Centers (EFRC) funded by the US Department of Energy’s Office of Science, under Award Number DE-SC0001294; and also partially supported by another EFRC center, the Center on Nanostructuring for Efficient Energy Conversion, under award number DE-SC0001060.

The in-operando studies were supported by the DOE Office of Energy Efficiency and Renewable Energy under the Batteries for Advanced Transportation Technologies (BATT) Program (being incorporated into the new Advanced Battery Materials Research program) under contract number DE-AC02-98CH10886 (recently changed to DE-SC0012704). Other sources of support include the Human Resources Development program (20124010203320) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Korea government Ministry of Trade, Industry and Energy.


  • Feng Wang, Sung-Wook Kim, Dong-Hwa Seo, Kisuk Kang, Liping Wang, Dong Su, John J. Vajo, John Wang & Jason Graetz (2015) “Ternary metal fluorides as high-energy cathodes with low cycling hysteresis” Nature Communications 6, Article number: 6668 doi: 10.1038/ncomms7668

  • Feng Wang, Hui-Chia Yu, Min-Hua Chen, Lijun Wu, Nathalie Pereira, Katsuyo Thornton, Anton Van der Ven, Yimei Zhu, Glenn G. Amatucci& Jason Graetz (2012) “Tracking lithium transport and electrochemical reactions in nanoparticles,” Nature Communications 3, Article number: 1201 doi: 10.1038/ncomms2185

  • Feng Wang, Rosa Robert, Natasha A. Chernova, Nathalie Pereira, Fredrick Omenya, Fadwa Badway, Xiao Hua, Michael Ruotolo, Ruigang Zhang, Lijun Wu, Vyacheslav Volkov, Dong Su, Baris Key, M. Stanley Whittingham, Clare P. Grey, Glenn G. Amatucci, Yimei Zhu, and Jason Graetz (2011) “Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes,” Journal of the American Chemical Society 133 (46), 18828-18836 doi: 10.1021/ja206268a

MTU America fined $1.5M for selling uncertified engines

Pipe: Advanced tech - Sat, 2015-03-28 06:59

The California Air Resources Board (ARB), US Department of Justice (DOJ) and US Environmental Protection Agency (EPA) joined forces to prosecute MTU America Inc. for selling uncertified large engines used in mining operations, resulting in a $1.5-million settlement which includes $300K to ARB to be used to fund school bus upgrades and air quality research.

As outlined in its settlement agreement, MTU, formerly known as Tognum America Inc., and a wholly owned subsidiary of Rolls Royce Power Systems AG, will pay a $1.2-million federal penalty and perform annual audits of its engine emission testing and certification activities for three years.

MTU also will pay $225,000 to the California Air Pollution Control Fund to support air quality research, and $75,000 to the San Joaquin Valley Air Pollution Control District to help fund the retrofit of diesel-powered school buses with particulate filters.

In November 2008, Michigan-based MTU reported to ARB and US EPA irregularities that occurred during durability testing on specific engine varieties.

The complaint filed with the settlement alleges that MTU violated the Clean Air Act by selling 895 non-road, heavy-duty diesel engines, which are used in mining, marine and power generation vehicles and equipment, without valid certificates of conformity. EPA voided the certificates of conformity purporting to cover the engines based on improper emissions testing by MTU employees.

Through information disclosed by the company, EPA discovered that MTU had obtained EPA certificates of conformity without conducting valid testing. EPA learned that MTU had installed a catalytic converter onto its prototype engine during testing to reduce emissions of pollutants. MTU had also performed maintenance during durability testing on the same engine, but had not reported this to EPA, a violation of testing regulations.

Bangladesh clears <b>transport</b> of 25000-tonne to Tripura

Pipe: India - Sat, 2015-03-28 05:33
Bangladesh government allowed Food Corporation of India (FCI) to transport 25,000 tonne of foodgrain from Kolkata to Tripura using its land and river ...

Extreme winter not a result of climate change: Study

Pipe: India - Sat, 2015-03-28 04:43
Contrary to popular belief, cold snaps like the ones that hit the eastern United States in the past winter are not a consequence of climate change, says a new study.